IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i22p7824-d685323.html
   My bibliography  Save this article

Stability Metric Based on Sensitivity Analysis Applied to Electrical Repowering System

Author

Listed:
  • João R. B. Paiva

    (Studies and Researches in Science and Technology Group (GCITE), Federal Institute of Goias (IFG), Goiania 74130-012, GO, Brazil
    Electrical, Mechanical and Computer Engineering School (EMC), Federal University of Goias (UFG), Goiania 74605-010, GO, Brazil)

  • Alana S. Magalhães

    (Studies and Researches in Science and Technology Group (GCITE), Federal Institute of Goias (IFG), Goiania 74130-012, GO, Brazil
    Electrical, Mechanical and Computer Engineering School (EMC), Federal University of Goias (UFG), Goiania 74605-010, GO, Brazil)

  • Pedro H. F. Moraes

    (Department of Electrical Engineering (DEE), University of Brasilia (UnB), Brasilia 70910-900, DF, Brazil)

  • Júnio S. Bulhões

    (Studies and Researches in Science and Technology Group (GCITE), Federal Institute of Goias (IFG), Goiania 74130-012, GO, Brazil
    Electrical, Mechanical and Computer Engineering School (EMC), Federal University of Goias (UFG), Goiania 74605-010, GO, Brazil)

  • Wesley P. Calixto

    (Studies and Researches in Science and Technology Group (GCITE), Federal Institute of Goias (IFG), Goiania 74130-012, GO, Brazil
    Electrical, Mechanical and Computer Engineering School (EMC), Federal University of Goias (UFG), Goiania 74605-010, GO, Brazil)

Abstract

Stability metrics are used to quantify a system’s ability to maintain equilibrium under disturbances. We did not identify the proposition of a stability metric using sensitivity analysis within the literature. This work proposes a system stability metric and its application to an electrical repowering system. The methodology for applying the proposed metric comprises: (i) system parameters sensitivity analysis and spider diagram construction, (ii) determining the array containing the line segments inclination angles of each spider diagram curve, and (iii) stability calculation using the array mean and maximum inclination value of a line segment. After simulating the model built for the electrical repowering system and applying the methodology, we obtain results regarding the sensitivity indices and stability values of system inputs relative to their outputs, considering the original system and with reduced parameters. Using the stability study, it was possible to determine different stability categories for the system parameters, which indicates the need for different analysis levels.

Suggested Citation

  • João R. B. Paiva & Alana S. Magalhães & Pedro H. F. Moraes & Júnio S. Bulhões & Wesley P. Calixto, 2021. "Stability Metric Based on Sensitivity Analysis Applied to Electrical Repowering System," Energies, MDPI, vol. 14(22), pages 1-21, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7824-:d:685323
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/22/7824/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/22/7824/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Escosa, Jesús M. & Romeo, Luis M., 2009. "Optimizing CO2 avoided cost by means of repowering," Applied Energy, Elsevier, vol. 86(11), pages 2351-2358, November.
    2. G. Dosi & M. C. Pereira & M. E. Virgillito, 2018. "On the robustness of the fat-tailed distribution of firm growth rates: a global sensitivity analysis," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 13(1), pages 173-193, April.
    3. Sanajaoba Singh, Sarangthem & Fernandez, Eugene, 2018. "Modeling, size optimization and sensitivity analysis of a remote hybrid renewable energy system," Energy, Elsevier, vol. 143(C), pages 719-731.
    4. H. Christopher Frey & Sumeet R. Patil, 2002. "Identification and Review of Sensitivity Analysis Methods," Risk Analysis, John Wiley & Sons, vol. 22(3), pages 553-578, June.
    5. Alan H. F. Silva & Alana S. Magalhaes & Junio S. Bulhoes & Gabriel A. Wainer & Gevanne P. Furriel & Wesley P. Calixto, 2021. "Parametric Regression Applied for Determination of Electrical Parameters of Synchronous and Induction Generators Operating in Parallel on the Electrical Energy Repowering System," Energies, MDPI, vol. 14(13), pages 1-21, June.
    6. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "Uncertainty and global sensitivity analysis for the optimal design of distributed energy systems," Applied Energy, Elsevier, vol. 214(C), pages 219-238.
    7. Borgonovo, Emanuele & Plischke, Elmar, 2016. "Sensitivity analysis: A review of recent advances," European Journal of Operational Research, Elsevier, vol. 248(3), pages 869-887.
    8. Viviane M. Gomes & Joao R. B. Paiva & Marcio R. C. Reis & Gabriel A. Wainer & Wesley P. Calixto, 2019. "Mechanism for Measuring System Complexity Applying Sensitivity Analysis," Complexity, Hindawi, vol. 2019, pages 1-12, April.
    9. Helton, J.C. & Johnson, J.D. & Sallaberry, C.J. & Storlie, C.B., 2006. "Survey of sampling-based methods for uncertainty and sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 91(10), pages 1175-1209.
    10. Nam Ho Kim & Haoyu Wang & Nestor V. Queipo, 2006. "Adaptive reduction of random variables using global sensitivity in reliability-based optimisation," International Journal of Reliability and Safety, Inderscience Enterprises Ltd, vol. 1(1/2), pages 102-119.
    11. Bogumił Kamiński & Michał Jakubczyk & Przemysław Szufel, 2018. "A framework for sensitivity analysis of decision trees," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(1), pages 135-159, March.
    12. Dong Van Dao & Hojjat Adeli & Hai-Bang Ly & Lu Minh Le & Vuong Minh Le & Tien-Thinh Le & Binh Thai Pham, 2020. "A Sensitivity and Robustness Analysis of GPR and ANN for High-Performance Concrete Compressive Strength Prediction Using a Monte Carlo Simulation," Sustainability, MDPI, vol. 12(3), pages 1-22, January.
    13. Zhang, Taiping & Stackhouse, Paul W. & Macpherson, Bradley & Mikovitz, J. Colleen, 2021. "A solar azimuth formula that renders circumstantial treatment unnecessary without compromising mathematical rigor: Mathematical setup, application and extension of a formula based on the subsolar poin," Renewable Energy, Elsevier, vol. 172(C), pages 1333-1340.
    14. D. Gareth Thomas & David S. Bywaters, 2021. "System Stability and Conclusions," Springer Books, in: The Creators of Inside Money, edition 2, chapter 0, pages 211-215, Springer.
    15. D. Gareth Thomas & David S. Bywaters, 2021. "The Creators of Inside Money," Springer Books, Springer, edition 2, number 978-3-030-70366-0, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Urbano, Eva M. & Martinez-Viol, Victor & Kampouropoulos, Konstantinos & Romeral, Luis, 2022. "Risk assessment of energy investment in the industrial framework – Uncertainty and Sensitivity Analysis for energy design and operation optimisation," Energy, Elsevier, vol. 239(PA).
    2. Tatsuya Sakurahara & Seyed Reihani & Ernie Kee & Zahra Mohaghegh, 2020. "Global importance measure methodology for integrated probabilistic risk assessment," Journal of Risk and Reliability, , vol. 234(2), pages 377-396, April.
    3. Makam, Vaishno Devi & Millossovich, Pietro & Tsanakas, Andreas, 2021. "Sensitivity analysis with χ2-divergences," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 372-383.
    4. Plischke, Elmar & Borgonovo, Emanuele, 2019. "Copula theory and probabilistic sensitivity analysis: Is there a connection?," European Journal of Operational Research, Elsevier, vol. 277(3), pages 1046-1059.
    5. Hou, Tianfeng & Nuyens, Dirk & Roels, Staf & Janssen, Hans, 2019. "Quasi-Monte Carlo based uncertainty analysis: Sampling efficiency and error estimation in engineering applications," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    6. Emanuele Borgonovo & Gordon B. Hazen & Elmar Plischke, 2016. "A Common Rationale for Global Sensitivity Measures and Their Estimation," Risk Analysis, John Wiley & Sons, vol. 36(10), pages 1871-1895, October.
    7. McFarland, John & DeCarlo, Erin, 2020. "A Monte Carlo framework for probabilistic analysis and variance decomposition with distribution parameter uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    8. Ehre, Max & Papaioannou, Iason & Straub, Daniel, 2020. "Global sensitivity analysis in high dimensions with PLS-PCE," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    9. Xiang Peng & Xiaoqing Xu & Jiquan Li & Shaofei Jiang, 2021. "A Sampling-Based Sensitivity Analysis Method Considering the Uncertainties of Input Variables and Their Distribution Parameters," Mathematics, MDPI, vol. 9(10), pages 1-18, May.
    10. Luigi Dolores & Maria Macchiaroli & Gianluigi De Mare, 2022. "Financial Impacts of the Energy Transition in Housing," Sustainability, MDPI, vol. 14(9), pages 1-17, April.
    11. Pizarro-Alonso, Amalia & Ravn, Hans & Münster, Marie, 2019. "Uncertainties towards a fossil-free system with high integration of wind energy in long-term planning," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    12. Helton, Jon C. & Brooks, Dusty M. & Sallaberry, Cédric J., 2020. "Margins associated with loss of assured safety for systems with multiple weak links and strong links," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    13. Sinan Xiao & Zhenzhou Lu & Pan Wang, 2018. "Multivariate Global Sensitivity Analysis Based on Distance Components Decomposition," Risk Analysis, John Wiley & Sons, vol. 38(12), pages 2703-2721, December.
    14. Wang, Jing & Kang, Lixia & Huang, Xiankun & Liu, Yongzhong, 2021. "An analysis framework for quantitative evaluation of parametric uncertainty in a cooperated energy storage system with multiple energy carriers," Energy, Elsevier, vol. 226(C).
    15. Andreas Binder & Onkar Jadhav & Volker Mehrmann, 2021. "Error Analysis of a Model Order Reduction Framework for Financial Risk Analysis," Papers 2110.00774, arXiv.org.
    16. Zhou, Yuekuan & Zheng, Siqian & Zhang, Guoqiang, 2020. "Machine-learning based study on the on-site renewable electrical performance of an optimal hybrid PCMs integrated renewable system with high-level parameters’ uncertainties," Renewable Energy, Elsevier, vol. 151(C), pages 403-418.
    17. Jing, Rui & He, Yang & He, Jijiang & Liu, Yang & Yang, Shoubing, 2022. "Global sensitivity based prioritizing the parametric uncertainties in economic analysis when co-locating photovoltaic with agriculture and aquaculture in China," Renewable Energy, Elsevier, vol. 194(C), pages 1048-1059.
    18. Zhu, Yueying & Wang, Qiuping Alexandre & Li, Wei & Cai, Xu, 2017. "An analytic method for sensitivity analysis of complex systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 52-59.
    19. Giovanni Dosi & Marcelo C. Pereira & Andrea Roventini & Maria Enrica Virgillito, 2022. "A complexity view on the future of work. Meta-modelling exploration of the multi-sector K+S agent based model," LEM Papers Series 2022/22, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    20. Marco Aurélio de Oliveira & Antonio Schalata Pacheco & André Hideto Futami & Luiz Veriano Oliveira Dalla Valentina & Carlos Alberto Flesch, 2023. "Self‐organizing maps and Bayesian networks in organizational modelling: A case study in innovation projects management," Systems Research and Behavioral Science, Wiley Blackwell, vol. 40(1), pages 61-87, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7824-:d:685323. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.