IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i22p7584-d678164.html
   My bibliography  Save this article

Low-Emissivity Window Films as an Energy Retrofit Option for a Historical Stone Building in Cold Climate

Author

Listed:
  • Saman Abolghasemi Moghaddam

    (Department of Mechanical Engineering, ADAI, University of Coimbra, Rua Luís Reis Santos, Pólo II, 3030-788 Coimbra, Portugal)

  • Magnus Mattsson

    (Faculty of Engineering and Sustainable Development, University of Gävle, 801 76 Gävle, Sweden)

  • Arman Ameen

    (Faculty of Engineering and Sustainable Development, University of Gävle, 801 76 Gävle, Sweden)

  • Jan Akander

    (Faculty of Engineering and Sustainable Development, University of Gävle, 801 76 Gävle, Sweden)

  • Manuel Gameiro Da Silva

    (Department of Mechanical Engineering, ADAI, University of Coimbra, Rua Luís Reis Santos, Pólo II, 3030-788 Coimbra, Portugal)

  • Nuno Simões

    (Department of Civil Engineering, University of Coimbra, Rua Luís Reis Santos, Pólo II, 3030-788 Coimbra, Portugal)

Abstract

Low-emissivity (low-E) window films are designed to improve the thermal comfort and energy performance of buildings. These films can be applied to different glazing systems without having to change the whole window. This makes it possible to apply films to windows in old and historical buildings for which preservation regulations often require that windows should remain unchanged. This research aims to investigate the impacts of low-E window films on the energy performance and thermal comfort of a three-story historical stone building in the cold climate of Sweden using the simulation software “IDA ICE”. On-site measurements were taken to acquire thermal and optical properties of the windows. This research shows that the application of the low-emissivity window film on the outward-facing surface of the inner pane of the double-glazed windows helped to reduce heat loss through the windows in winter and unwanted heat gains in summer by almost 36% and 35%, respectively. This resulted in a 6% reduction in the building’s annual energy consumption for heating purposes and a reduction in the percentage of total occupant hours with thermal dissatisfaction from 14% (without the film) to 11% (with the film). However, the relatively high price of the films and low price of district heating results in a rather long payback period of around 30 years. Thus, the films seem scarcely attractive from a purely economic viewpoint, but may be warranted for energy/environmental and thermal comfort reasons.

Suggested Citation

  • Saman Abolghasemi Moghaddam & Magnus Mattsson & Arman Ameen & Jan Akander & Manuel Gameiro Da Silva & Nuno Simões, 2021. "Low-Emissivity Window Films as an Energy Retrofit Option for a Historical Stone Building in Cold Climate," Energies, MDPI, vol. 14(22), pages 1-28, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7584-:d:678164
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/22/7584/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/22/7584/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hossein Bakhtiari & Jan Akander & Mathias Cehlin & Abolfazl Hayati, 2020. "On the Performance of Night Ventilation in a Historic Office Building in Nordic Climate," Energies, MDPI, vol. 13(16), pages 1-26, August.
    2. Cuce, Erdem & Riffat, Saffa B., 2015. "A state-of-the-art review on innovative glazing technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 695-714.
    3. Michał Piasecki & Elżbieta Radziszewska-Zielina & Piotr Czerski & Małgorzata Fedorczak-Cisak & Michał Zielina & Paweł Krzyściak & Patrycja Kwaśniewska-Sip & Wojciech Grześkowiak, 2020. "Implementation of the Indoor Environmental Quality (IEQ) Model for the Assessment of a Retrofitted Historical Masonry Building," Energies, MDPI, vol. 13(22), pages 1-27, November.
    4. Yard, Stefan, 2000. "Developments of the payback method," International Journal of Production Economics, Elsevier, vol. 67(2), pages 155-167, September.
    5. Muñoz González, C.Mª & León Rodríguez, A.L. & Suárez Medina, R. & Ruiz Jaramillo, J., 2020. "Effects of future climate change on the preservation of artworks, thermal comfort and energy consumption in historic buildings," Applied Energy, Elsevier, vol. 276(C).
    6. Webb, Amanda L., 2017. "Energy retrofits in historic and traditional buildings: A review of problems and methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 748-759.
    7. Pal, Sudip Kumar & Alanne, Kari & Jokisalo, Juha & Siren, Kai, 2016. "Energy performance and economic viability of advanced window technologies for a new Finnish townhouse concept," Applied Energy, Elsevier, vol. 162(C), pages 11-20.
    8. Ali Bahadori-Jahromi & Abdulazeez Rotimi & Anastasia Mylona & Paulina Godfrey & Darren Cook, 2017. "Impact of Window Films on the Overall Energy Consumption of Existing UK Hotel Buildings," Sustainability, MDPI, vol. 9(5), pages 1-23, May.
    9. Lee, J.W. & Jung, H.J. & Park, J.Y. & Lee, J.B. & Yoon, Y., 2013. "Optimization of building window system in Asian regions by analyzing solar heat gain and daylighting elements," Renewable Energy, Elsevier, vol. 50(C), pages 522-531.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giuseppe Aruta & Fabrizio Ascione & Nicola Bianco & Teresa Iovane & Margherita Mastellone, 2023. "Assessment of the Incentive Rate to Favor the Energy Retrofit of Public Buildings: A Comprehensive Approach for an Italian University Facility," Energies, MDPI, vol. 16(11), pages 1-16, June.
    2. Saman Abolghasemi Moghaddam & Catarina Serra & Manuel Gameiro da Silva & Nuno Simões, 2023. "Comprehensive Review and Analysis of Glazing Systems towards Nearly Zero-Energy Buildings: Energy Performance, Thermal Comfort, Cost-Effectiveness, and Environmental Impact Perspectives," Energies, MDPI, vol. 16(17), pages 1-30, August.
    3. Gireesh Nair & Leo Verde & Thomas Olofsson, 2022. "A Review on Technical Challenges and Possibilities on Energy Efficient Retrofit Measures in Heritage Buildings," Energies, MDPI, vol. 15(20), pages 1-20, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Belén Onecha & Alicia Dotor, 2021. "Simulation Method to Assess Thermal Comfort in Historical Buildings with High-Volume Interior Spaces—The Case of the Gothic Basilica of Sta. Maria del Mar in Barcelona," Sustainability, MDPI, vol. 13(5), pages 1-20, March.
    2. Lešnik, Maja & Kravanja, Stojan & Premrov, Miroslav & Žegarac Leskovar, Vesna, 2020. "Optimal design of timber-glass upgrade modules for vertical building extension from the viewpoints of energy efficiency and visual comfort," Applied Energy, Elsevier, vol. 270(C).
    3. Jiang, Tengyao & Zhao, Xinpeng & Yin, Xiaobo & Yang, Ronggui & Tan, Gang, 2021. "Dynamically adaptive window design with thermo-responsive hydrogel for energy efficiency," Applied Energy, Elsevier, vol. 287(C).
    4. Shiva Amirkhani & Ali Bahadori-Jahromi & Anastasia Mylona & Paulina Godfrey & Darren Cook, 2019. "Impact of Low-E Window Films on Energy Consumption and CO 2 Emissions of an Existing UK Hotel Building," Sustainability, MDPI, vol. 11(16), pages 1-24, August.
    5. Belén Onecha & Alicia Dotor & Carlos Marmolejo-Duarte, 2021. "Beyond Cultural and Historic Values, Sustainability as a New Kind of Value for Historic Buildings," Sustainability, MDPI, vol. 13(15), pages 1-18, July.
    6. Shafaghat, A. & Keyvanfar, A., 2022. "Dynamic façades design typologies, technologies, measurement techniques, and physical performances across thermal, optical, ventilation, and electricity generation outlooks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    7. Qiong He & S. Thomas Ng & Md. Uzzal Hossain & Martin Skitmore, 2019. "Energy-Efficient Window Retrofit for High-Rise Residential Buildings in Different Climatic Zones of China," Sustainability, MDPI, vol. 11(22), pages 1-19, November.
    8. Małgorzata Basińska & Dobrosława Kaczorek & Halina Koczyk, 2021. "Economic and Energy Analysis of Building Retrofitting Using Internal Insulations," Energies, MDPI, vol. 14(9), pages 1-18, April.
    9. Bayoumi, Mohannad & Fink, Dietrich, 2014. "Maximizing the performance of an energy generating façade in terms of energy saving strategies," Renewable Energy, Elsevier, vol. 64(C), pages 294-305.
    10. Giacomo Chiesa & Andrea Acquaviva & Mario Grosso & Lorenzo Bottaccioli & Maurizio Floridia & Edoardo Pristeri & Edoardo Maria Sanna, 2019. "Parametric Optimization of Window-to-Wall Ratio for Passive Buildings Adopting A Scripting Methodology to Dynamic-Energy Simulation," Sustainability, MDPI, vol. 11(11), pages 1-30, May.
    11. Ferenc Kalmár & Tünde Kalmár, 2020. "Thermal Comfort Aspects of Solar Gains during the Heating Season," Energies, MDPI, vol. 13(7), pages 1-15, April.
    12. Cristina Cornaro & Ludovica Renzi & Marco Pierro & Aldo Di Carlo & Alessandro Guglielmotti, 2018. "Thermal and Electrical Characterization of a Semi-Transparent Dye-Sensitized Photovoltaic Module under Real Operating Conditions," Energies, MDPI, vol. 11(1), pages 1-16, January.
    13. Cho, Hyun Mi & Yang, Sungwoong & Wi, Seunghwan & Chang, Seong Jin & Kim, Sumin, 2020. "Hygrothermal and energy retrofit planning of masonry façade historic building used as museum and office: A cultural properties case study," Energy, Elsevier, vol. 201(C).
    14. Hu, Xin & Zhang, Yingbo & Cai, Wei & Ming, Yang & Yu, Rujun & Yang, Hongyu & Noor, Nuruzzaman & Fei, Bin, 2023. "Transparent wood with heat shielding and high fire safety properties for energy saving applications," Renewable Energy, Elsevier, vol. 219(P1).
    15. Liu, Changyu & Wu, Yangyang & Bian, Ji & Li, Dong & Liu, Xiaoyan, 2018. "Influence of PCM design parameters on thermal and optical performance of multi-layer glazed roof," Applied Energy, Elsevier, vol. 212(C), pages 151-161.
    16. Wang, Y. & Mauree, D. & Sun, Q. & Lin, H. & Scartezzini, J.L. & Wennersten, R., 2020. "A review of approaches to low-carbon transition of high-rise residential buildings in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    17. Michaux, Ghislain & Greffet, Rémy & Salagnac, Patrick & Ridoret, Jean-Baptiste, 2019. "Modelling of an airflow window and numerical investigation of its thermal performances by comparison to conventional double and triple-glazed windows," Applied Energy, Elsevier, vol. 242(C), pages 27-45.
    18. Karolis Banionis & Jurga Kumžienė & Arūnas Burlingis & Juozas Ramanauskas & Valdas Paukštys, 2021. "The Changes in Thermal Transmittance of Window Insulating Glass Units Depending on Outdoor Temperatures in Cold Climate Countries," Energies, MDPI, vol. 14(6), pages 1-22, March.
    19. Halil Alibaba, 2016. "Determination of Optimum Window to External Wall Ratio for Offices in a Hot and Humid Climate," Sustainability, MDPI, vol. 8(2), pages 1-21, February.
    20. Delivand, Mitra Kami & Barz, Mirko & Gheewala, Shabbir H. & Sajjakulnukit, Boonrod, 2011. "Economic feasibility assessment of rice straw utilization for electricity generating through combustion in Thailand," Applied Energy, Elsevier, vol. 88(11), pages 3651-3658.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7584-:d:678164. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.