IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v162y2016icp11-20.html
   My bibliography  Save this article

Energy performance and economic viability of advanced window technologies for a new Finnish townhouse concept

Author

Listed:
  • Pal, Sudip Kumar
  • Alanne, Kari
  • Jokisalo, Juha
  • Siren, Kai

Abstract

Among the elements of a typical building envelope, windows are responsible for the greatest energy loss due to their high U-value. Conventional windows tend to have poor glazing properties, which causes significant heat loss during the winter season and undesirable heat gain during the summer season. Advanced window technologies are therefore required to mitigate the energy consumption of buildings. The key hypothesis in this study is that advanced windows become economically viable for end-users if the difference in life-cycle cost between advanced window types and the state-of-the-art (reference) window is equal to zero. To verify this hypothesis, we calculate the allowable additional investment costs (dIC) for three types of advanced windows over a given life span. Different advanced windows; electrochromic, PV and vacuum windows together with a self-cleaning feature were compared with a state-of-the-art window with excellent properties (reference window) in terms of energy performance and life-cycle cost for a conceptual residential house (i.e. townhouse) in Finland. By performing a whole-building simulation using IDA ICE, the impact of these windows on the total delivered energy needs of the townhouse were estimated. Among the alternatives, the vacuum window (lowest U-value) offers the highest dIC value, due to its maximum energy savings. With a generic efficiency of 6%, the PV window holds the intermediate position between the vacuum and reference window in terms of dIC value. Hypothetically, with a U-value of 0.6W/m2K, the PV window would become the most energy efficient window alternative. The self-cleaning feature proved to be a dominant factor toward the increase of dIC value by avoiding maintenance costs. Electrochromic glazing is not economically feasible due to its negative dIC value as it doesn’t offer life cycle cost savings.

Suggested Citation

  • Pal, Sudip Kumar & Alanne, Kari & Jokisalo, Juha & Siren, Kai, 2016. "Energy performance and economic viability of advanced window technologies for a new Finnish townhouse concept," Applied Energy, Elsevier, vol. 162(C), pages 11-20.
  • Handle: RePEc:eee:appene:v:162:y:2016:i:c:p:11-20
    DOI: 10.1016/j.apenergy.2015.10.056
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915012830
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.10.056?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cuce, Erdem & Riffat, Saffa B., 2015. "A state-of-the-art review on innovative glazing technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 695-714.
    2. Orioli, Aldo & Di Gangi, Alessandra, 2014. "Review of the energy and economic parameters involved in the effectiveness of grid-connected PV systems installed in multi-storey buildings," Applied Energy, Elsevier, vol. 113(C), pages 955-969.
    3. Mangkuto, R.A. & Wang, S. & Meerbeek, B.W. & Aries, M.B.C. & van Loenen, E.J., 2014. "Lighting performance and electrical energy consumption of a virtual window prototype," Applied Energy, Elsevier, vol. 135(C), pages 261-273.
    4. Chae, Young Tae & Kim, Jeehwan & Park, Hongsik & Shin, Byungha, 2014. "Building energy performance evaluation of building integrated photovoltaic (BIPV) window with semi-transparent solar cells," Applied Energy, Elsevier, vol. 129(C), pages 217-227.
    5. Liao, Wei & Xu, Shen, 2015. "Energy performance comparison among see-through amorphous-silicon PV (photovoltaic) glazings and traditional glazings under different architectural conditions in China," Energy, Elsevier, vol. 83(C), pages 267-275.
    6. Ochoa, Carlos E. & Aries, Myriam B.C. & van Loenen, Evert J. & Hensen, Jan L.M., 2012. "Considerations on design optimization criteria for windows providing low energy consumption and high visual comfort," Applied Energy, Elsevier, vol. 95(C), pages 238-245.
    7. Buratti, C. & Moretti, E., 2012. "Glazing systems with silica aerogel for energy savings in buildings," Applied Energy, Elsevier, vol. 98(C), pages 396-403.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shafaghat, A. & Keyvanfar, A., 2022. "Dynamic façades design typologies, technologies, measurement techniques, and physical performances across thermal, optical, ventilation, and electricity generation outlooks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    2. Peng, Jinqing & Curcija, Dragan C. & Lu, Lin & Selkowitz, Stephen E. & Yang, Hongxing & Zhang, Weilong, 2016. "Numerical investigation of the energy saving potential of a semi-transparent photovoltaic double-skin facade in a cool-summer Mediterranean climate," Applied Energy, Elsevier, vol. 165(C), pages 345-356.
    3. Alessandro Cannavale & Francesco Martellotta & Francesco Fiorito & Ubaldo Ayr, 2020. "The Challenge for Building Integration of Highly Transparent Photovoltaics and Photoelectrochromic Devices," Energies, MDPI, vol. 13(8), pages 1-24, April.
    4. Saman Abolghasemi Moghaddam & Magnus Mattsson & Arman Ameen & Jan Akander & Manuel Gameiro Da Silva & Nuno Simões, 2021. "Low-Emissivity Window Films as an Energy Retrofit Option for a Historical Stone Building in Cold Climate," Energies, MDPI, vol. 14(22), pages 1-28, November.
    5. Rehman, Hassam ur & Hirvonen, Janne & Sirén, Kai, 2017. "A long-term performance analysis of three different configurations for community-sized solar heating systems in high latitudes," Renewable Energy, Elsevier, vol. 113(C), pages 479-493.
    6. Halawa, Edward & Ghaffarianhoseini, Amirhosein & Ghaffarianhoseini, Ali & Trombley, Jeremy & Hassan, Norhaslina & Baig, Mirza & Yusoff, Safiah Yusmah & Azzam Ismail, Muhammad, 2018. "A review on energy conscious designs of building façades in hot and humid climates: Lessons for (and from) Kuala Lumpur and Darwin," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2147-2161.
    7. Krarti, Moncef, 2022. "Design optimization of smart glazing optical properties for office spaces," Applied Energy, Elsevier, vol. 308(C).
    8. Syrrokostas, George & Leftheriotis, George & Yannopoulos, Spyros N., 2022. "Lessons learned from 25 years of development of photoelectrochromic devices: A technical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    9. Araújo, Catarina & Almeida, Manuela & Bragança, Luís & Barbosa, José Amarilio, 2016. "Cost–benefit analysis method for building solutions," Applied Energy, Elsevier, vol. 173(C), pages 124-133.
    10. Krarti, Moncef, 2023. "Optimal optical properties for smart glazed windows applied to residential buildings," Energy, Elsevier, vol. 278(PB).
    11. Ke, Yujie & Tan, Yutong & Feng, Chengchen & Chen, Cong & Lu, Qi & Xu, Qiyang & Wang, Tao & Liu, Hai & Liu, Xinghai & Peng, Jinqing & Long, Yi, 2022. "Tetra-Fish-Inspired aesthetic thermochromic windows toward Energy-Saving buildings," Applied Energy, Elsevier, vol. 315(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cristina Cornaro & Ludovica Renzi & Marco Pierro & Aldo Di Carlo & Alessandro Guglielmotti, 2018. "Thermal and Electrical Characterization of a Semi-Transparent Dye-Sensitized Photovoltaic Module under Real Operating Conditions," Energies, MDPI, vol. 11(1), pages 1-16, January.
    2. Sun, Yanyi & Liang, Runqi & Wu, Yupeng & Wilson, Robin & Rutherford, Peter, 2017. "Development of a comprehensive method to analyse glazing systems with Parallel Slat Transparent Insulation material (PS-TIM)," Applied Energy, Elsevier, vol. 205(C), pages 951-963.
    3. Halil Alibaba, 2016. "Determination of Optimum Window to External Wall Ratio for Offices in a Hot and Humid Climate," Sustainability, MDPI, vol. 8(2), pages 1-21, February.
    4. Gigih Rahmandhani Setyantho & Hansaem Park & Seongju Chang, 2021. "Multi-Criteria Performance Assessment for Semi-Transparent Photovoltaic Windows in Different Climate Contexts," Sustainability, MDPI, vol. 13(4), pages 1-21, February.
    5. Tiantian Zhang & Meng Wang & Hongxing Yang, 2018. "A Review of the Energy Performance and Life-Cycle Assessment of Building-Integrated Photovoltaic (BIPV) Systems," Energies, MDPI, vol. 11(11), pages 1-34, November.
    6. Liu, Keke & Wang, Meng & Peng, Jinqing & Li, Sihui & Luo, Yimo & Zhang, Xiaofeng, 2024. "Effect of angle of incidence on the optical-electrical-thermal performance of photovoltaic insulated glass units," Renewable Energy, Elsevier, vol. 226(C).
    7. Hyung Jun An & Jong Ho Yoon & Young Sub An & Eunnyeong Heo, 2018. "Heating and Cooling Performance of Office Buildings with a-Si BIPV Windows Considering Operating Conditions in Temperate Climates: The Case of Korea," Sustainability, MDPI, vol. 10(12), pages 1-19, December.
    8. Ihara, Takeshi & Gao, Tao & Grynning, Steinar & Jelle, Bjørn Petter & Gustavsen, Arild, 2015. "Aerogel granulate glazing facades and their application potential from an energy saving perspective," Applied Energy, Elsevier, vol. 142(C), pages 179-191.
    9. Skandalos, Nikolaos & Wang, Meng & Kapsalis, Vasileios & D'Agostino, Delia & Parker, Danny & Bhuvad, Sushant Suresh & Udayraj, & Peng, Jinqing & Karamanis, Dimitris, 2022. "Building PV integration according to regional climate conditions: BIPV regional adaptability extending Köppen-Geiger climate classification against urban and climate-related temperature increases," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    10. Shafaghat, A. & Keyvanfar, A., 2022. "Dynamic façades design typologies, technologies, measurement techniques, and physical performances across thermal, optical, ventilation, and electricity generation outlooks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    11. Cezary Misiopecki & Robert Hart & Arild Gustavsen & Bjørn Petter Jelle, 2021. "Operating Hardware Impact on the Heat Transfer Properties of Windows," Energies, MDPI, vol. 14(4), pages 1-12, February.
    12. Sun, Yanyi & Wu, Yupeng & Wilson, Robin, 2018. "A review of thermal and optical characterisation of complex window systems and their building performance prediction," Applied Energy, Elsevier, vol. 222(C), pages 729-747.
    13. Bjørn Petter Jelle, 2015. "Building Integrated Photovoltaics: A Concise Description of the Current State of the Art and Possible Research Pathways," Energies, MDPI, vol. 9(1), pages 1-30, December.
    14. Wang, Meng & Peng, Jinqing & Li, Nianping & Yang, Hongxing & Wang, Chunlei & Li, Xue & Lu, Tao, 2017. "Comparison of energy performance between PV double skin facades and PV insulating glass units," Applied Energy, Elsevier, vol. 194(C), pages 148-160.
    15. Huang, Junchao & Chen, Xi & Peng, Jinqing & Yang, Hongxing, 2021. "Modelling analyses of the thermal property and heat transfer performance of a novel compositive PV vacuum glazing," Renewable Energy, Elsevier, vol. 163(C), pages 1238-1252.
    16. Refat, Khalid H. & Sajjad, Redwan N., 2020. "Prospect of achieving net-zero energy building with semi-transparent photovoltaics: A device to system level perspective," Applied Energy, Elsevier, vol. 279(C).
    17. Wang, Meng & Peng, Jinqing & Li, Nianping & Lu, Lin & Ma, Tao & Yang, Hongxing, 2016. "Assessment of energy performance of semi-transparent PV insulating glass units using a validated simulation model," Energy, Elsevier, vol. 112(C), pages 538-548.
    18. Yu, Guoqing & Yang, Hongxing & Luo, Daina & Cheng, Xu & Ansah, Mark Kyeredey, 2021. "A review on developments and researches of building integrated photovoltaic (BIPV) windows and shading blinds," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    19. Hong, Taehoon & Koo, Choongwan & Oh, Jeongyoon & Jeong, Kwangbok, 2017. "Nonlinearity analysis of the shading effect on the technical–economic performance of the building-integrated photovoltaic blind," Applied Energy, Elsevier, vol. 194(C), pages 467-480.
    20. Paola Marrone & Francesco Asdrubali & Daniela Venanzi & Federico Orsini & Luca Evangelisti & Claudia Guattari & Roberto De Lieto Vollaro & Lucia Fontana & Gianluca Grazieschi & Paolo Matteucci & Marta, 2021. "On the Retrofit of Existing Buildings with Aerogel Panels: Energy, Environmental and Economic Issues," Energies, MDPI, vol. 14(5), pages 1-22, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:162:y:2016:i:c:p:11-20. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.