IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i22p7570-d677853.html
   My bibliography  Save this article

Dynamics and Numerical Simulation of Contaminant Diffusion for a Non-Flushing Ecological Toilet

Author

Listed:
  • Zhonghua Zhang

    (National Engineering Research Center of Protected Agriculture, New Rural Development Institute of Tongji University, Shanghai 200092, China)

  • Lingjie Zeng

    (State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China)

  • Huixian Shi

    (National Engineering Research Center of Protected Agriculture, New Rural Development Institute of Tongji University, Shanghai 200092, China)

  • Gukun Yang

    (National Engineering Research Center of Protected Agriculture, New Rural Development Institute of Tongji University, Shanghai 200092, China)

  • Zhenjiang Yu

    (State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China)

  • Wenjun Yin

    (State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China)

  • Jun Gao

    (School of Mechanical Engineering, Tongji University, Shanghai 200092, China)

  • Lina Wang

    (Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China)

  • Yalei Zhang

    (State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China)

  • Xuefei Zhou

    (State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China)

Abstract

The poor indoor air quality (IAQ) of severely polluted toilets is associated with increased risk of severe disease. This study aimed to evaluate the overall IAQ according to the contaminant removal efficiency, volume average concentration, and breathing zone control level. The characteristics of contaminant transmission in a non-flushing ecological toilet (NFET) were analyzed using the computational fluid dynamics (CFD) methodology, and the proposed model was further validated based on experimental measurements. Both an orthogonal experimental design and CFD were used to analyze factors such as exhaust fan position (EFP), air change rate per hour (ACH), natural vent location (NVL), and grid height (G-h). The EFP and ACH were demonstrated to be the dominant factors affecting the IAQ, whereas NVL and G-h were found to play key roles. Single-factor analysis based on the significance levels of the ACH, EFP, and NVL was conducted using the CFD methodology to define three exhaust behaviors—namely, “ineffective”, “enhanced”, and “excessive”. These results provide key insights that may be used to improve the IAQ of NFETs.

Suggested Citation

  • Zhonghua Zhang & Lingjie Zeng & Huixian Shi & Gukun Yang & Zhenjiang Yu & Wenjun Yin & Jun Gao & Lina Wang & Yalei Zhang & Xuefei Zhou, 2021. "Dynamics and Numerical Simulation of Contaminant Diffusion for a Non-Flushing Ecological Toilet," Energies, MDPI, vol. 14(22), pages 1-22, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7570-:d:677853
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/22/7570/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/22/7570/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shiva Najaf Khosravi & Ardeshir Mahdavi, 2021. "A CFD-Based Parametric Thermal Performance Analysis of Supply Air Ventilated Windows," Energies, MDPI, vol. 14(9), pages 1-20, April.
    2. Lina Seduikyte & Laura Stasiulienė & Tadas Prasauskas & Dainius Martuzevičius & Jurgita Černeckienė & Tadas Ždankus & Mantas Dobravalskis & Paris Fokaides, 2019. "Field Measurements and Numerical Simulation for the Definition of the Thermal Stratification and Ventilation Performance in a Mechanically Ventilated Sports Hall," Energies, MDPI, vol. 12(12), pages 1-14, June.
    3. Guangjun Yang & Xiaoxiao Li & Li Ding & Fahua Zhu & Zhigang Wang & Sheng Wang & Zhen Xu & Jingxin Xu & Pengxiang Qiu & Zhaobing Guo, 2019. "CFD Simulation of Pollutant Emission in a Natural Draft Dry Cooling Tower with Flue Gas Injection: Comparison between LES and RANS," Energies, MDPI, vol. 12(19), pages 1-21, September.
    4. Sung-Chin Chung & Yi-Pin Lin & Chun Yang & Chi-Ming Lai, 2019. "Natural Ventilation Effectiveness of Awning Windows in Restrooms in K-12 Public Schools," Energies, MDPI, vol. 12(12), pages 1-14, June.
    5. Quitzau, Maj-Britt, 2007. "Water-flushing toilets: Systemic development and path-dependent characteristics and their bearing on technological alternatives," Technology in Society, Elsevier, vol. 29(3), pages 351-360.
    6. Eusébio Conceição & Hazim Awbi, 2021. "Evaluation of Integral Effect of Thermal Comfort, Air Quality and Draught Risk for Desks Equipped with Personalized Ventilation Systems," Energies, MDPI, vol. 14(11), pages 1-19, June.
    7. Radoslav Ponechal & Peter Krušinský & Peter Kysela & Peter Pisca, 2021. "Simulations of Airflow in the Roof Space of a Gothic Sanctuary Using CFD Models," Energies, MDPI, vol. 14(12), pages 1-20, June.
    8. Yi-Pin Lin, 2021. "Natural Ventilation of Toilet Units in K–12 School Restrooms Using CFD," Energies, MDPI, vol. 14(16), pages 1-16, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhonghua Zhang & Lingjie Zeng & Huixian Shi & Hua Liu & Wenjun Yin & Haowen Shen & Libin Yang & Jun Gao & Lina Wang & Yalei Zhang & Xuefei Zhou, 2021. "CFD Study on the Ventilation Effectiveness in a Public Toilet under Three Ventilation Methods," Energies, MDPI, vol. 14(24), pages 1-25, December.
    2. Shengqiang Wei & Yiping Lu & Wei Yang & Yubin Ke & Haibiao Zheng & Lingbo Zhu & Jianfei Tong & Longwei Mei & Shinian Fu & Congju Yao, 2022. "Comparative Research on Ventilation Characteristics of Scattering and Sample Room from Chinese Spallation Neutron Source," Energies, MDPI, vol. 15(11), pages 1-16, May.
    3. Anatoliy M. Pavlenko & Karolina Sadko, 2023. "Evaluation of Numerical Methods for Predicting the Energy Performance of Windows," Energies, MDPI, vol. 16(3), pages 1-23, February.
    4. Hiroki Ikeda & Yasushi Ooi & Takashi Nakaya, 2021. "Underfloor Heating Using Room Air Conditioners with Air Source Heat Pump in a Foundation Insulation House," Energies, MDPI, vol. 14(21), pages 1-29, October.
    5. Michal Poljak & Radoslav Ponechal, 2023. "Microclimatic Monitoring—The Beginning of Saving Historical Sacral Buildings in Europe," Energies, MDPI, vol. 16(3), pages 1-20, January.
    6. Yi-Pin Lin, 2021. "Natural Ventilation of Toilet Units in K–12 School Restrooms Using CFD," Energies, MDPI, vol. 14(16), pages 1-16, August.
    7. Shafaghat, A. & Keyvanfar, A., 2022. "Dynamic façades design typologies, technologies, measurement techniques, and physical performances across thermal, optical, ventilation, and electricity generation outlooks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    8. Jorge de Brito & M. Glória Gomes, 2020. "Special Issue “Building Thermal Envelope”," Energies, MDPI, vol. 13(5), pages 1-5, February.
    9. Salem Zeiny & Yassine Cherif & Stephane Lassue, 2023. "Analysis of the Thermo-Aeraulic Behavior of a Heated Supply Air Window in Forced Convection: Numerical and Experimental Approaches," Energies, MDPI, vol. 16(7), pages 1-27, April.
    10. Kokko, Suvi & Fischer, Klara, 2021. "A practice approach to understanding the multilevel dynamics of sanitation innovation," Technology in Society, Elsevier, vol. 64(C).
    11. Paris A. Fokaides & Rasa Apanaviciene & Jurgita Černeckiene & Andrius Jurelionis & Egle Klumbyte & Vilma Kriauciunaite-Neklejonoviene & Darius Pupeikis & Donatas Rekus & Jolanta Sadauskiene & Lina Sed, 2020. "Research Challenges and Advancements in the field of Sustainable Energy Technologies in the Built Environment," Sustainability, MDPI, vol. 12(20), pages 1-20, October.
    12. Wenhui Ji & Yanping Yuan, 2022. "Development of Assessing the Thermal Comfort and Energy Performance for Buildings," Energies, MDPI, vol. 15(16), pages 1-2, August.
    13. Ewa Zender-Świercz & Marek Telejko & Beata Galiszewska & Mariola Starzomska, 2022. "Assessment of Thermal Comfort in Rooms Equipped with a Decentralised Façade Ventilation Unit," Energies, MDPI, vol. 15(19), pages 1-16, September.
    14. Michael Jedelhauser & Jonas Mehr & Claudia R. Binder, 2018. "Transition of the Swiss Phosphorus System towards a Circular Economy—Part 2: Socio-Technical Scenarios," Sustainability, MDPI, vol. 10(6), pages 1-19, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7570-:d:677853. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.