IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i12p2243-d239198.html
   My bibliography  Save this article

Field Measurements and Numerical Simulation for the Definition of the Thermal Stratification and Ventilation Performance in a Mechanically Ventilated Sports Hall

Author

Listed:
  • Lina Seduikyte

    (Faculty of Civil Engineering and Architecture, Kaunas University of Technology, Studentu str. 48, LT-51367 Kaunas, Lithuania)

  • Laura Stasiulienė

    (Faculty of Civil Engineering and Architecture, Kaunas University of Technology, Studentu str. 48, LT-51367 Kaunas, Lithuania)

  • Tadas Prasauskas

    (Department of Environmental Technology, Kaunas University of Technology, Radvilenu str. 19, LT-50254 Kaunas, Lithuania)

  • Dainius Martuzevičius

    (Department of Environmental Technology, Kaunas University of Technology, Radvilenu str. 19, LT-50254 Kaunas, Lithuania)

  • Jurgita Černeckienė

    (Faculty of Civil Engineering and Architecture, Kaunas University of Technology, Studentu str. 48, LT-51367 Kaunas, Lithuania)

  • Tadas Ždankus

    (Faculty of Civil Engineering and Architecture, Kaunas University of Technology, Studentu str. 48, LT-51367 Kaunas, Lithuania)

  • Mantas Dobravalskis

    (Faculty of Civil Engineering and Architecture, Kaunas University of Technology, Studentu str. 48, LT-51367 Kaunas, Lithuania)

  • Paris Fokaides

    (Faculty of Civil Engineering and Architecture, Kaunas University of Technology, Studentu str. 48, LT-51367 Kaunas, Lithuania
    School of Engineering, Frederick University, Nicosia 1036, Cyprus)

Abstract

Sports halls must meet strict requirements for energy and indoor air quality (IAQ); therefore, there is a great challenge in the design of the heating, ventilation, and air conditioning (HVAC) systems of such buildings. IAQ in sports halls may be affected by thermal stratification, pollutants from different sources, the maintenance of building, and the HVAC system of the building, as well as by the activities performed inside the building. The aim of this study is to investigate thermal stratification conditions in accordance with the performance of the HVAC systems in the basketball training hall of Žalgirio Arena, Kaunas in Lithuania. Field measurements including temperature, relative humidity, and CO 2 concentration were implemented between January and February in 2017. The temperature and relative humidity were measured at different heights (0.1, 1.7, 2.5, 3.9, 5.4, and 6.9 m) and at five different locations in the arena. Experimental results show that mixing the ventilation application together with air heating results in higher temperatures in the occupied zone than in the case of air heating without ventilation. Computational fluid dynamics (CFD) simulations revealed that using the same heating output as for warm air heating and underfloor heating, combined with mechanical mixing or displacement ventilation, ensures higher temperatures in the occupied zone, creating a potential for energy saving. An increase of air temperature was noticed from 3.9 m upwards. Since CO 2 concentration near the ceiling was permissible, the study concluded that it is possible to recycle the air from the mentioned zone and use it again by mixing with the air of lower layers, thus saving energy for air heating.

Suggested Citation

  • Lina Seduikyte & Laura Stasiulienė & Tadas Prasauskas & Dainius Martuzevičius & Jurgita Černeckienė & Tadas Ždankus & Mantas Dobravalskis & Paris Fokaides, 2019. "Field Measurements and Numerical Simulation for the Definition of the Thermal Stratification and Ventilation Performance in a Mechanically Ventilated Sports Hall," Energies, MDPI, vol. 12(12), pages 1-14, June.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:12:p:2243-:d:239198
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/12/2243/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/12/2243/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fokaides, Paris A. & Jurelionis, Andrius & Gagyte, Laura & Kalogirou, Soteris A., 2016. "Mock target IR thermography for indoor air temperature measurement," Applied Energy, Elsevier, vol. 164(C), pages 676-685.
    2. Nord, Natasa & Mathisen, Hans Martin & Cao, Guangyu, 2015. "Energy cost models for air supported sports hall in cold climates considering energy efficiency," Renewable Energy, Elsevier, vol. 84(C), pages 56-64.
    3. El-Wahab M. Adel El-Kadi, Abd & Fanny, Mona A., 2003. "Architectural designs and thermal performances of school sports-halls," Applied Energy, Elsevier, vol. 76(1-3), pages 289-303, September.
    4. Zhao, Kang & Liu, Xiao-Hua & Jiang, Yi, 2016. "Application of radiant floor cooling in large space buildings – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1083-1096.
    5. Johnson, C.J. & Moran, J.C. & Paine, S.C. & Anderson, H.W. & Breysse, P.A., 1975. "Abatement of toxic levels of carbon monoxide in Seattle ice skating rinks," American Journal of Public Health, American Public Health Association, vol. 65(10), pages 1087-1090.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shengqiang Wei & Yiping Lu & Wei Yang & Yubin Ke & Haibiao Zheng & Lingbo Zhu & Jianfei Tong & Longwei Mei & Shinian Fu & Congju Yao, 2022. "Comparative Research on Ventilation Characteristics of Scattering and Sample Room from Chinese Spallation Neutron Source," Energies, MDPI, vol. 15(11), pages 1-16, May.
    2. Hiroki Ikeda & Yasushi Ooi & Takashi Nakaya, 2021. "Underfloor Heating Using Room Air Conditioners with Air Source Heat Pump in a Foundation Insulation House," Energies, MDPI, vol. 14(21), pages 1-29, October.
    3. Zhonghua Zhang & Lingjie Zeng & Huixian Shi & Gukun Yang & Zhenjiang Yu & Wenjun Yin & Jun Gao & Lina Wang & Yalei Zhang & Xuefei Zhou, 2021. "Dynamics and Numerical Simulation of Contaminant Diffusion for a Non-Flushing Ecological Toilet," Energies, MDPI, vol. 14(22), pages 1-22, November.
    4. Spudys, Paulius & Osadcha, Iryna & Morkunaite, Lina & Manhanga, Fallon Clare & Georgali, Phoebe Zoe & Klumbyte, Egle & Jurelionis, Andrius & Papadopoulos, Agis & Fokaides, Paris, 2024. "A comparative life cycle assessment of building sustainability across typical European building geometries," Energy, Elsevier, vol. 302(C).
    5. Paris A. Fokaides & Rasa Apanaviciene & Jurgita Černeckiene & Andrius Jurelionis & Egle Klumbyte & Vilma Kriauciunaite-Neklejonoviene & Darius Pupeikis & Donatas Rekus & Jolanta Sadauskiene & Lina Sed, 2020. "Research Challenges and Advancements in the field of Sustainable Energy Technologies in the Built Environment," Sustainability, MDPI, vol. 12(20), pages 1-20, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Du, Kun & Calautit, John & Eames, Philip & Wu, Yupeng, 2021. "A state-of-the-art review of the application of phase change materials (PCM) in Mobilized-Thermal Energy Storage (M-TES) for recovering low-temperature industrial waste heat (IWH) for distributed heat," Renewable Energy, Elsevier, vol. 168(C), pages 1040-1057.
    2. Liu, Xiaochen & Zhang, Tao & Liu, Xiaohua & Li, Lingshan & Lin, Lin & Jiang, Yi, 2021. "Energy saving potential for space heating in Chinese airport terminals: The impact of air infiltration," Energy, Elsevier, vol. 215(PB).
    3. Hawks, M.A. & Cho, S., 2024. "Review and analysis of current solutions and trends for zero energy building (ZEB) thermal systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    4. Xu, Ruoyu & Liu, Xiaochen & Liu, Xiaohua & Zhang, Tao, 2024. "Quantifying the energy flexibility potential of a centralized air-conditioning system: A field test study of hub airports," Energy, Elsevier, vol. 298(C).
    5. Fabio Fantozzi & Francesco Leccese & Giacomo Salvadori & Michele Rocca & Marco Garofalo, 2016. "LED Lighting for Indoor Sports Facilities: Can Its Use Be Considered as Sustainable Solution from a Techno-Economic Standpoint?," Sustainability, MDPI, vol. 8(7), pages 1-13, June.
    6. Abdelkader Laafer & Djaffar Semmar & Abdelkader Hamid & Mahmoud Bourouis, 2021. "Thermal and Surface Radiosity Analysis of an Underfloor Heating System in a Bioclimatic Habitat," Energies, MDPI, vol. 14(13), pages 1-17, June.
    7. Francesco Calise & Rafal Damian Figaj & Laura Vanoli, 2018. "Energy and Economic Analysis of Energy Savings Measures in a Swimming Pool Centre by Means of Dynamic Simulations," Energies, MDPI, vol. 11(9), pages 1-27, August.
    8. Jia, Hongyuan & Pang, Xiufeng & Haves, Philip, 2018. "Experimentally-determined characteristics of radiant systems for office buildings," Applied Energy, Elsevier, vol. 221(C), pages 41-54.
    9. Chen, Wanhe & Yin, Yonggao & Zhao, Xingwang & Fan, Fangsu & Cao, Bowen & Ji, Qiang & Xu, Guoying, 2023. "Sepiolite based humidity-control coating specially for alleviate the condensation problem of radiant cooling panel," Energy, Elsevier, vol. 272(C).
    10. Lu, Yanyu & Dong, Jiankai & Liu, Jing, 2020. "Zonal modelling for thermal and energy performance of large space buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    11. Sergio Ortega Alba & Mario Manana, 2016. "Energy Research in Airports: A Review," Energies, MDPI, vol. 9(5), pages 1-19, May.
    12. Hong, Tianzhen & Piette, Mary Ann & Chen, Yixing & Lee, Sang Hoon & Taylor-Lange, Sarah C. & Zhang, Rongpeng & Sun, Kaiyu & Price, Phillip, 2015. "Commercial Building Energy Saver: An energy retrofit analysis toolkit," Applied Energy, Elsevier, vol. 159(C), pages 298-309.
    13. Paris A. Fokaides & Rasa Apanaviciene & Jurgita Černeckiene & Andrius Jurelionis & Egle Klumbyte & Vilma Kriauciunaite-Neklejonoviene & Darius Pupeikis & Donatas Rekus & Jolanta Sadauskiene & Lina Sed, 2020. "Research Challenges and Advancements in the field of Sustainable Energy Technologies in the Built Environment," Sustainability, MDPI, vol. 12(20), pages 1-20, October.
    14. Lin, Xiaojie & Zhang, Junwei & Du-Ikonen, Liuliu & Zhong, Wei, 2023. "An infiltration load calculation model of large-space buildings based on the grand canonical ensemble theory," Energy, Elsevier, vol. 275(C).
    15. Lucchi, Elena, 2018. "Applications of the infrared thermography in the energy audit of buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3077-3090.
    16. Elnour, Mariam & Fadli, Fodil & Himeur, Yassine & Petri, Ioan & Rezgui, Yacine & Meskin, Nader & Ahmad, Ahmad M., 2022. "Performance and energy optimization of building automation and management systems: Towards smart sustainable carbon-neutral sports facilities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    17. Guo, Hongshan & Aviv, Dorit & Loyola, Mauricio & Teitelbaum, Eric & Houchois, Nicholas & Meggers, Forrest, 2020. "On the understanding of the mean radiant temperature within both the indoor and outdoor environment, a critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    18. Spiliotis, Konstantinos & Gonçalves, Juliana E. & Van De Sande, Wieland & Ravyts, Simon & Daenen, Michael & Saelens, Dirk & Baert, Kris & Driesen, Johan, 2019. "Modeling and validation of a DC/DC power converter for building energy simulations: Application to BIPV systems," Applied Energy, Elsevier, vol. 240(C), pages 646-665.
    19. Mohadeseh Seyednezhad & Hamidreza Najafi, 2021. "Solar-Powered Thermoelectric-Based Cooling and Heating System for Building Applications: A Parametric Study," Energies, MDPI, vol. 14(17), pages 1-17, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:12:p:2243-:d:239198. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.