IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i12p3694-d579060.html
   My bibliography  Save this article

Simulations of Airflow in the Roof Space of a Gothic Sanctuary Using CFD Models

Author

Listed:
  • Radoslav Ponechal

    (Department of Building Engineering and Urban Planning, Faculty of Civil Engineering, University of Zilina, 010 26 Zilina, Slovakia)

  • Peter Krušinský

    (Department of Building Engineering and Urban Planning, Faculty of Civil Engineering, University of Zilina, 010 26 Zilina, Slovakia)

  • Peter Kysela

    (Department of Building Engineering and Urban Planning, Faculty of Civil Engineering, University of Zilina, 010 26 Zilina, Slovakia)

  • Peter Pisca

    (Department of Building Engineering and Urban Planning, Faculty of Civil Engineering, University of Zilina, 010 26 Zilina, Slovakia)

Abstract

For a deep understanding of the airflow in an environment of historic wooden trusses, it is necessary to analyze the object using simulation methods. To calculate the amount of air passing through the structural openings (components) using dynamic simulation, multi-zone network models based on the simplicity of modeling the individual zones are suitable. For a more detailed analysis of airflow and temperature distribution within one space, a computational fluid dynamics (CFD) simulation model was performed. The air volume through openings and surface temperatures was adopted from the multi-zone airflow network model. By using this simulation technique during a sunny summer day four characteristic states of air movement were simulated in the attic: more intense flow at noon and at midnight caused by a large temperature difference between air and surrounding surfaces and, subsequently, less intense flow when the air was mixed up effectively. The temperature distribution in the cross-sections did not only indicate an increase in temperature with increasing height (up to 50 °C at noon) but also a temperature increase near the southern roof. The surface temperature of the masonry walls was stable (19–33 °C), while the air temperature fluctuated. The image of the flow was completed by ventilation through the tower, which acted as a solar chimney. The airflow through the door to the tower was almost 0.5 m 3 s −1 at summer midnight.

Suggested Citation

  • Radoslav Ponechal & Peter Krušinský & Peter Kysela & Peter Pisca, 2021. "Simulations of Airflow in the Roof Space of a Gothic Sanctuary Using CFD Models," Energies, MDPI, vol. 14(12), pages 1-20, June.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:12:p:3694-:d:579060
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/12/3694/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/12/3694/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Amelia Carolina Sparavigna, 2014. "The Solar Orientation of the Gothic Cathedrals of France," International Journal of Sciences, Office ijSciences, vol. 3(04), pages 6-11, April.
    2. Ádám László Katona & Huang Xuan & Sara Elhadad & István Kistelegdi & István Háber, 2020. "High-Resolution CFD and In-Situ Monitoring Based Validation of an Industrial Passive Air Conduction System (PACS)," Energies, MDPI, vol. 13(12), pages 1-23, June.
    3. Hughes, Ben Richard & Calautit, John Kaiser & Ghani, Saud Abdul, 2012. "The development of commercial wind towers for natural ventilation: A review," Applied Energy, Elsevier, vol. 92(C), pages 606-627.
    4. Shimin Wang & Zhigang Shen & Linxia Gu, 2012. "The Impact of Roof Pitch and Ceiling Insulation on Cooling Load of Naturally-Ventilated Attics," Energies, MDPI, vol. 5(7), pages 1-19, July.
    5. Harris, D.J. & Helwig, N., 2007. "Solar chimney and building ventilation," Applied Energy, Elsevier, vol. 84(2), pages 135-146, February.
    6. Jan Richter & Kamil Staněk & Jan Tywoniak & Pavel Kopecký, 2020. "Moisture-Safe Cold Attics in Humid Climates of Europe and North America," Energies, MDPI, vol. 13(15), pages 1-27, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michal Poljak & Radoslav Ponechal, 2023. "Microclimatic Monitoring—The Beginning of Saving Historical Sacral Buildings in Europe," Energies, MDPI, vol. 16(3), pages 1-20, January.
    2. Zhonghua Zhang & Lingjie Zeng & Huixian Shi & Gukun Yang & Zhenjiang Yu & Wenjun Yin & Jun Gao & Lina Wang & Yalei Zhang & Xuefei Zhou, 2021. "Dynamics and Numerical Simulation of Contaminant Diffusion for a Non-Flushing Ecological Toilet," Energies, MDPI, vol. 14(22), pages 1-22, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmed, Tariq & Kumar, Prashant & Mottet, Laetitia, 2021. "Natural ventilation in warm climates: The challenges of thermal comfort, heatwave resilience and indoor air quality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    2. Pouranian, Fatemeh & Akbari, Habibollah & Hosseinalipour, S.M., 2021. "Performance assessment of solar chimney coupled with earth-to-air heat exchanger: A passive alternative for an indoor swimming pool ventilation in hot-arid climate," Applied Energy, Elsevier, vol. 299(C).
    3. Montazeri, H. & Montazeri, F., 2018. "CFD simulation of cross-ventilation in buildings using rooftop wind-catchers: Impact of outlet openings," Renewable Energy, Elsevier, vol. 118(C), pages 502-520.
    4. Tong, Zheming & Chen, Yujiao & Malkawi, Ali & Liu, Zhu & Freeman, Richard B., 2016. "Energy saving potential of natural ventilation in China: The impact of ambient air pollution," Applied Energy, Elsevier, vol. 179(C), pages 660-668.
    5. Martins, Nuno R. & Carrilho da Graça, Guilherme, 2017. "Impact of outdoor PM2.5 on natural ventilation usability in California’s nondomestic buildings," Applied Energy, Elsevier, vol. 189(C), pages 711-724.
    6. Ziming Liao & Chunlong Zhuang & Guangqin Huang & Hongyu Zhang & Shengbo Li & Xinyi Zhang & Lei Cheng & Fei Gan, 2024. "A Review of the Current Status and Prospects of Improving Indoor Environment for Lightweight Buildings in High-Altitude Cold Regions," Sustainability, MDPI, vol. 16(24), pages 1-27, December.
    7. Dušan Katunský & Marián Vertaľ & Erika Dolníková & Silvia Zozuláková & Kristián Hutkai & Zuzana Dická, 2022. "Mutual Interaction of Daylight and Overheating in the Attic Space in Summer Time," Sustainability, MDPI, vol. 14(23), pages 1-25, November.
    8. Zhang, Tiantian & Yang, Hongxing, 2019. "Heat transfer pattern judgment and thermal performance enhancement of insulation air layers in building envelopes," Applied Energy, Elsevier, vol. 250(C), pages 834-845.
    9. Zhang, Tiantian & Yang, Hongxing, 2019. "Flow and heat transfer characteristics of natural convection in vertical air channels of double-skin solar façades," Applied Energy, Elsevier, vol. 242(C), pages 107-120.
    10. Payam Nejat & Fatemeh Jomehzadeh & Hasanen Mohammed Hussen & John Kaiser Calautit & Muhd Zaimi Abd Majid, 2018. "Application of Wind as a Renewable Energy Source for Passive Cooling through Windcatchers Integrated with Wing Walls," Energies, MDPI, vol. 11(10), pages 1-23, September.
    11. Shi, Long, 2018. "Theoretical models for wall solar chimney under cooling and heating modes considering room configuration," Energy, Elsevier, vol. 165(PB), pages 925-938.
    12. Liu, Shuli & Li, Yongcai, 2015. "An experimental study on the thermal performance of a solar chimney without and with PCM," Renewable Energy, Elsevier, vol. 81(C), pages 338-346.
    13. Abdul Ghani Olabi & Nabila Shehata & Hussein M. Maghrabie & Lobna A. Heikal & Mohammad Ali Abdelkareem & Shek Mohammod Atiqure Rahman & Sheikh Khaleduzzaman Shah & Enas Taha Sayed, 2022. "Progress in Solar Thermal Systems and Their Role in Achieving the Sustainable Development Goals," Energies, MDPI, vol. 15(24), pages 1-31, December.
    14. Lee, Duen-Sheng & Hung, Tzu-Chen & Lin, Jaw-Ren & Zhao, Jun, 2015. "Experimental investigations on solar chimney for optimal heat collection to be utilized in organic Rankine cycle," Applied Energy, Elsevier, vol. 154(C), pages 651-662.
    15. Michal Poljak & Radoslav Ponechal, 2023. "Microclimatic Monitoring—The Beginning of Saving Historical Sacral Buildings in Europe," Energies, MDPI, vol. 16(3), pages 1-20, January.
    16. Khosravi, Mohsen & Fazelpour, Farivar & Rosen, Marc A., 2019. "Improved application of a solar chimney concept in a two-story building: An enhanced geometry through a numerical approach," Renewable Energy, Elsevier, vol. 143(C), pages 569-585.
    17. Calautit, John Kaiser & Hughes, Ben Richard & O’Connor, Dominic & Shahzad, Sally Salome, 2017. "Numerical and experimental analysis of a multi-directional wind tower integrated with vertically-arranged heat transfer devices (VHTD)," Applied Energy, Elsevier, vol. 185(P2), pages 1120-1135.
    18. Rafał Andrzejczyk, 2024. "Analysis of the Year-Round Operation of Enhanced Natural Ventilation Systems under Transient Weather Conditions in Europe," Energies, MDPI, vol. 17(15), pages 1-36, August.
    19. Zavala-Guillén, I. & Xamán, J. & Hernández-Pérez, I. & Hernández-Lopéz, I. & Gijón-Rivera, M. & Chávez, Y., 2018. "Numerical study of the optimum width of 2a diurnal double air-channel solar chimney," Energy, Elsevier, vol. 147(C), pages 403-417.
    20. Chenari, Behrang & Dias Carrilho, João & Gameiro da Silva, Manuel, 2016. "Towards sustainable, energy-efficient and healthy ventilation strategies in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1426-1447.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:12:p:3694-:d:579060. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.