IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v302y2024ics036054422401466x.html
   My bibliography  Save this article

A comparative life cycle assessment of building sustainability across typical European building geometries

Author

Listed:
  • Spudys, Paulius
  • Osadcha, Iryna
  • Morkunaite, Lina
  • Manhanga, Fallon Clare
  • Georgali, Phoebe Zoe
  • Klumbyte, Egle
  • Jurelionis, Andrius
  • Papadopoulos, Agis
  • Fokaides, Paris

Abstract

In recent years, significant progress has been made in the sustainability assessment of building materials and buildings. The introduction of Environmental Product Declarations (EPDs), the development of Level(s), and the release of relevant series of standards have helped to improve the sustainability of buildings. However, a research question that remains unresolved is the lack of information related to the comparison of the sustainability performance of building units across Europe and the significance of conducting such research. This study addressed this question by implementing a comparative whole-building Life Cycle Assessment (LCA) across buildings in Europe. The study emphasizes the necessity of considering typical building geometries and thermal performance of buildings across Europe and introduces six typical building geometries for three different European clusters (northern-western, central-eastern, southern cluster). The results of this study revealed that the sustainability performance of buildings is not similar across the EU and that cost-optimal minimum thermal performance requirements for building structures have a significant impact on their environmental performance. Particularly, single-family houses in Central and Eastern Europe are responsible for 324.42 kgCO2e/m2. Contrary to this, Northern and Western European single-family buildings have the lowest environmental impact with 268.97 kgCO2e/m2. Multifamily houses in Southern Europe are responsible for 321.82 kgCO2e/m2, in Northern and Western Europe the environmental impact is 275.37 kgCO2e/m2. The outcome of this study is significant for the scientific community involved in assessing the sustainability of buildings in Europe, as it provides valuable insights into their environmental performance, considering the energy efficiency and sustainability aspects of buildings. The study's findings should be considered when setting minimum LCA-related requirements, in view of the provisions of the new EU policies expressed in the Energy Performance of Buildings Directive (EPBD) recast for defining the Global Warming Potential (GWP) of new buildings.

Suggested Citation

  • Spudys, Paulius & Osadcha, Iryna & Morkunaite, Lina & Manhanga, Fallon Clare & Georgali, Phoebe Zoe & Klumbyte, Egle & Jurelionis, Andrius & Papadopoulos, Agis & Fokaides, Paris, 2024. "A comparative life cycle assessment of building sustainability across typical European building geometries," Energy, Elsevier, vol. 302(C).
  • Handle: RePEc:eee:energy:v:302:y:2024:i:c:s036054422401466x
    DOI: 10.1016/j.energy.2024.131693
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422401466X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131693?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alessandro L. V. Coradini & Christopher Ne Ville & Zachary A. Krieger & Joshua Roemer & Cara Hull & Shawn Yang & Daniel T. Lusk & Ian M. Ehrenreich, 2023. "Building synthetic chromosomes from natural DNA," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Lina Seduikyte & Laura Stasiulienė & Tadas Prasauskas & Dainius Martuzevičius & Jurgita Černeckienė & Tadas Ždankus & Mantas Dobravalskis & Paris Fokaides, 2019. "Field Measurements and Numerical Simulation for the Definition of the Thermal Stratification and Ventilation Performance in a Mechanically Ventilated Sports Hall," Energies, MDPI, vol. 12(12), pages 1-14, June.
    3. Paris A. Fokaides & Rasa Apanaviciene & Jurgita Černeckiene & Andrius Jurelionis & Egle Klumbyte & Vilma Kriauciunaite-Neklejonoviene & Darius Pupeikis & Donatas Rekus & Jolanta Sadauskiene & Lina Sed, 2020. "Research Challenges and Advancements in the field of Sustainable Energy Technologies in the Built Environment," Sustainability, MDPI, vol. 12(20), pages 1-20, October.
    4. ., 2023. "Building social architecture," Chapters, in: The Global Challenge, chapter 5, pages 140-173, Edward Elgar Publishing.
    5. Paris A. Fokaides & Christiana Panteli & Andri Panayidou, 2020. "How Are the Smart Readiness Indicators Expected to Affect the Energy Performance of Buildings: First Evidence and Perspectives," Sustainability, MDPI, vol. 12(22), pages 1-12, November.
    6. Leonardo Rodrigues & João M. P. Q. Delgado & Adélio Mendes & António G. B. Lima & Ana S. Guimarães, 2023. "Sustainability Assessment of Buildings Indicators," Sustainability, MDPI, vol. 15(4), pages 1-14, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shengqiang Wei & Yiping Lu & Wei Yang & Yubin Ke & Haibiao Zheng & Lingbo Zhu & Jianfei Tong & Longwei Mei & Shinian Fu & Congju Yao, 2022. "Comparative Research on Ventilation Characteristics of Scattering and Sample Room from Chinese Spallation Neutron Source," Energies, MDPI, vol. 15(11), pages 1-16, May.
    2. Hiroki Ikeda & Yasushi Ooi & Takashi Nakaya, 2021. "Underfloor Heating Using Room Air Conditioners with Air Source Heat Pump in a Foundation Insulation House," Energies, MDPI, vol. 14(21), pages 1-29, October.
    3. Laura Canale & Marianna De Monaco & Biagio Di Pietra & Giovanni Puglisi & Giorgio Ficco & Ilaria Bertini & Marco Dell’Isola, 2021. "Estimating the Smart Readiness Indicator in the Italian Residential Building Stock in Different Scenarios," Energies, MDPI, vol. 14(20), pages 1-19, October.
    4. Enrique Cano-Suñén & Ignacio Martínez & Ángel Fernández & Belén Zalba & Roberto Casas, 2023. "Internet of Things (IoT) in Buildings: A Learning Factory," Sustainability, MDPI, vol. 15(16), pages 1-26, August.
    5. Bjelland, David & Brozovsky, Johannes & Hrynyszyn, Bozena Dorota, 2024. "Systematic review: Upscaling energy retrofitting to the multi-building level," Renewable and Sustainable Energy Reviews, Elsevier, vol. 198(C).
    6. Krahé, Max, 2023. "Italiens Stagnation verstehen," Papers 277907, Dezernat Zukunft - Institute for Macrofinance, Berlin.
    7. Eglė Klumbytė & Raimondas Bliūdžius & Milena Medineckienė & Paris A. Fokaides, 2021. "An MCDM Model for Sustainable Decision-Making in Municipal Residential Buildings Facilities Management," Sustainability, MDPI, vol. 13(5), pages 1-16, March.
    8. Andrzej Ożadowicz, 2022. "A Hybrid Approach in Design of Building Energy Management System with Smart Readiness Indicator and Building as a Service Concept," Energies, MDPI, vol. 15(4), pages 1-19, February.
    9. Gabriel Fernando García Sánchez & Rolando Enrique Guzmán López & Roberto Alonso Gonzalez-Lezcano, 2021. "Fique as a Sustainable Material and Thermal Insulation for Buildings: Study of Its Decomposition and Thermal Conductivity," Sustainability, MDPI, vol. 13(13), pages 1-12, July.
    10. Aleksejs Prozuments & Anatolijs Borodinecs & Diana Bajare, 2023. "Trombe Wall System’s Thermal Energy Output Analysis at a Factory Building," Energies, MDPI, vol. 16(4), pages 1-13, February.
    11. Asuamah Yeboah, Samuel, 2024. "Navigating the Nexus: Overcoming Challenges in Public-Private Partnerships for Sustainable Building Initiatives in Developing Countries," MPRA Paper 122667, University Library of Munich, Germany, revised 05 Nov 2024.
    12. Ioannis Vardopoulos & Ioannis Vannas & George Xydis & Constantinos Vassiliades, 2023. "Homeowners’ Perceptions of Renewable Energy and Market Value of Sustainable Buildings," Energies, MDPI, vol. 16(10), pages 1-18, May.
    13. Paris A. Fokaides & Rasa Apanaviciene & Jurgita Černeckiene & Andrius Jurelionis & Egle Klumbyte & Vilma Kriauciunaite-Neklejonoviene & Darius Pupeikis & Donatas Rekus & Jolanta Sadauskiene & Lina Sed, 2020. "Research Challenges and Advancements in the field of Sustainable Energy Technologies in the Built Environment," Sustainability, MDPI, vol. 12(20), pages 1-20, October.
    14. Hernández, José L. & de Miguel, Ignacio & Vélez, Fredy & Vasallo, Ali, 2024. "Challenges and opportunities in European smart buildings energy management: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    15. Tatjana Vilutienė & Rasa Džiugaitė-Tumėnienė & Diana Kalibatienė & Darius Kalibatas, 2021. "How BIM Contributes to a Building’s Energy Efficiency throughout Its Whole Life Cycle: Systematic Mapping," Energies, MDPI, vol. 14(20), pages 1-27, October.
    16. Pachouri, Vikrant & Singh, Rajesh & Gehlot, Anita & Pandey, Shweta & Vaseem Akram, Shaik & Abbas, Mohamed, 2024. "Empowering sustainability in the built environment: A technological Lens on industry 4.0 Enablers," Technology in Society, Elsevier, vol. 76(C).
    17. Zheng Xu & Nan Zheng, 2020. "Incorporating Virtual Reality Technology in Safety Training Solution for Construction Site of Urban Cities," Sustainability, MDPI, vol. 13(1), pages 1-19, December.
    18. Zhonghua Zhang & Lingjie Zeng & Huixian Shi & Gukun Yang & Zhenjiang Yu & Wenjun Yin & Jun Gao & Lina Wang & Yalei Zhang & Xuefei Zhou, 2021. "Dynamics and Numerical Simulation of Contaminant Diffusion for a Non-Flushing Ecological Toilet," Energies, MDPI, vol. 14(22), pages 1-22, November.
    19. Van Thillo, L. & Verbeke, S. & Audenaert, A., 2022. "The potential of building automation and control systems to lower the energy demand in residential buildings: A review of their performance and influencing parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:302:y:2024:i:c:s036054422401466x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.