IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i21p7034-d665784.html
   My bibliography  Save this article

Underfloor Heating Using Room Air Conditioners with Air Source Heat Pump in a Foundation Insulation House

Author

Listed:
  • Hiroki Ikeda

    (DAI-DAN Co., Ltd., Miyoshi-machi, Iruma-gun, Saitama 354-0044, Japan)

  • Yasushi Ooi

    (OOIKENSETSUKOUGYOU Co., Ltd., Kitasaku-gun, Nagano 389-0207, Japan)

  • Takashi Nakaya

    (Department of Architecture, Faculty of Engineering, Shinshu University, Nagano 380-0928, Japan)

Abstract

A good thermal environment is important in a place where occupants stay for a long time. Since heating a house consumes a lot of energy, an energy-efficient heating method will be required. Then, by combining a heat pump and underfloor heating, there is a possibility that both thermal comfort and energy saving can be achieved. The survey was conducted on a detached house located in Nagano Prefecture, Japan. The average outside air temperature was 4.2 °C. This study investigated the indoor thermal environment, evaluated the operating performance of the heat pump, and calculated the heat load by two-dimensional analysis. More than 80% of the subjects were satisfied with the thermal environment and the neutral temperature was 18.9 °C. In the operation of the heat pump, defrost operation was confirmed, but the average COP was 2.9, and it operated efficiently. In addition, the heat loss from the foundation slab was examined. Proper insulation placement has shown the potential to reduce heat loss. In conclusion, the use of heat pumps as a heat source has been shown to be efficient even in cold climates, and this study supports the construction of new heating methods.

Suggested Citation

  • Hiroki Ikeda & Yasushi Ooi & Takashi Nakaya, 2021. "Underfloor Heating Using Room Air Conditioners with Air Source Heat Pump in a Foundation Insulation House," Energies, MDPI, vol. 14(21), pages 1-29, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7034-:d:665784
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/21/7034/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/21/7034/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lina Seduikyte & Laura Stasiulienė & Tadas Prasauskas & Dainius Martuzevičius & Jurgita Černeckienė & Tadas Ždankus & Mantas Dobravalskis & Paris Fokaides, 2019. "Field Measurements and Numerical Simulation for the Definition of the Thermal Stratification and Ventilation Performance in a Mechanically Ventilated Sports Hall," Energies, MDPI, vol. 12(12), pages 1-14, June.
    2. Wang, W. & Feng, Y.C. & Zhu, J.H. & Li, L.T. & Guo, Q.C. & Lu, W.P., 2013. "Performances of air source heat pump system for a kind of mal-defrost phenomenon appearing in moderate climate conditions," Applied Energy, Elsevier, vol. 112(C), pages 1138-1145.
    3. Lee, Kwang Ho & Schiavon, Stefano & Bauman, Fred & Webster, Tom, 2012. "Thermal decay in underfloor air distribution (UFAD) systems: Fundamentals and influence on system performance," Applied Energy, Elsevier, vol. 91(1), pages 197-207.
    4. Yu-Jin Hwang & Jae-Weon Jeong, 2021. "Energy Saving Potential of Radiant Floor Heating Assisted by an Air Source Heat Pump in Residential Buildings," Energies, MDPI, vol. 14(5), pages 1-14, March.
    5. Tomas Kropas & Giedrė Streckienė & Juozas Bielskus, 2021. "Experimental Investigation of Frost Formation Influence on an Air Source Heat Pump Evaporator," Energies, MDPI, vol. 14(18), pages 1-15, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yongcai & Li, Wuyan & Liu, Zongsheng & Lu, Jun & Zeng, Liyue & Yang, Lulu & Xie, Ling, 2017. "Theoretical and numerical study on performance of the air-source heat pump system in Tibet," Renewable Energy, Elsevier, vol. 114(PB), pages 489-501.
    2. Shengqiang Wei & Yiping Lu & Wei Yang & Yubin Ke & Haibiao Zheng & Lingbo Zhu & Jianfei Tong & Longwei Mei & Shinian Fu & Congju Yao, 2022. "Comparative Research on Ventilation Characteristics of Scattering and Sample Room from Chinese Spallation Neutron Source," Energies, MDPI, vol. 15(11), pages 1-16, May.
    3. Liu, Ziyang & He, Mingfei & Tang, Xiaoping & Yuan, Guofeng & Yang, Bin & Yu, Xiaohui & Wang, Zhifeng, 2024. "Capacity optimisation and multi-dimensional analysis of air-source heat pump heating system: A case study," Energy, Elsevier, vol. 294(C).
    4. Chen, Siliang & Chen, Kang & Zhu, Xu & Jin, Xinqiao & Du, Zhimin, 2022. "Deep learning-based image recognition method for on-demand defrosting control to save energy in commercial energy systems," Applied Energy, Elsevier, vol. 324(C).
    5. Song, Mengjie & Deng, Shiming & Dang, Chaobin & Mao, Ning & Wang, Zhihua, 2018. "Review on improvement for air source heat pump units during frosting and defrosting," Applied Energy, Elsevier, vol. 211(C), pages 1150-1170.
    6. Leandra Vanbaelinghem & Andrea Costantino & Florian Grassauer & Nathan Pelletier, 2024. "Alternative Heating, Ventilation, and Air Conditioning (HVAC) System Considerations for Reducing Energy Use and Emissions in Egg Industries in Temperate and Continental Climates: A Systematic Review o," Sustainability, MDPI, vol. 16(12), pages 1-35, June.
    7. Kim, Min-Hwan & Lee, Kwan-Soo, 2015. "Determination method of defrosting start-time based on temperature measurements," Applied Energy, Elsevier, vol. 146(C), pages 263-269.
    8. Song, Mengjie & Xia, Liang & Mao, Ning & Deng, Shiming, 2016. "An experimental study on even frosting performance of an air source heat pump unit with a multi-circuit outdoor coil," Applied Energy, Elsevier, vol. 164(C), pages 36-44.
    9. Ni, Long & Dong, Jiankai & Yao, Yang & Shen, Chao & Qv, Dehu & Zhang, Xuedan, 2015. "A review of heat pump systems for heating and cooling of buildings in China in the last decade," Renewable Energy, Elsevier, vol. 84(C), pages 30-45.
    10. Tomas Kropas & Giedrė Streckienė & Juozas Bielskus, 2021. "Experimental Investigation of Frost Formation Influence on an Air Source Heat Pump Evaporator," Energies, MDPI, vol. 14(18), pages 1-15, September.
    11. Eom, Yong Hwan & Chung, Yoong & Park, Minsu & Hong, Sung Bin & Kim, Min Soo, 2021. "Deep learning-based prediction method on performance change of air source heat pump system under frosting conditions," Energy, Elsevier, vol. 228(C).
    12. María M. Villar-Ramos & Iván Hernández-Pérez & Karla M. Aguilar-Castro & Ivett Zavala-Guillén & Edgar V. Macias-Melo & Irving Hernández-López & Juan Serrano-Arellano, 2022. "A Review of Thermally Activated Building Systems (TABS) as an Alternative for Improving the Indoor Environment of Buildings," Energies, MDPI, vol. 15(17), pages 1-31, August.
    13. Song, Mengjie & Xia, Liang & Deng, Shiming, 2016. "A modeling study on alleviating uneven defrosting for a vertical three-circuit outdoor coil in an air source heat pump unit during reverse cycle defrosting," Applied Energy, Elsevier, vol. 161(C), pages 268-278.
    14. Carroll, P. & Chesser, M. & Lyons, P., 2020. "Air Source Heat Pumps field studies: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    15. Paris A. Fokaides & Rasa Apanaviciene & Jurgita Černeckiene & Andrius Jurelionis & Egle Klumbyte & Vilma Kriauciunaite-Neklejonoviene & Darius Pupeikis & Donatas Rekus & Jolanta Sadauskiene & Lina Sed, 2020. "Research Challenges and Advancements in the field of Sustainable Energy Technologies in the Built Environment," Sustainability, MDPI, vol. 12(20), pages 1-20, October.
    16. Wang, Wei & Zhang, Shiqiang & Li, Zhaoyang & Sun, Yuying & Deng, Shiming & Wu, Xu, 2020. "Determination of the optimal defrosting initiating time point for an ASHP unit based on the minimum loss coefficient in the nominal output heating energy," Energy, Elsevier, vol. 191(C).
    17. Chul-Ho Kim & Seung-Eon Lee & Kwang-Ho Lee & Kang-Soo Kim, 2019. "Detailed Comparison of the Operational Characteristics of Energy-Conserving HVAC Systems during the Cooling Season," Energies, MDPI, vol. 12(21), pages 1-29, October.
    18. Onder Kul & Mehmet Nurettin Uğural, 2022. "Comparative Economic and Experimental Assessment of Air Source Heat Pump and Gas-fired boiler: A Case Study from Turkey," Sustainability, MDPI, vol. 14(21), pages 1-17, November.
    19. Pu, Jihong & Shen, Chao & Zhang, Chunxiao & Liu, Xingjiang, 2021. "A semi-experimental method for evaluating frosting performance of air source heat pumps," Renewable Energy, Elsevier, vol. 173(C), pages 913-925.
    20. Li, Zhaoyang & Wang, Wei & Sun, Yuying & Wang, Shiquan & Deng, Shiming & Lin, Yao, 2021. "Applying image recognition to frost built-up detection in air source heat pumps," Energy, Elsevier, vol. 233(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7034-:d:665784. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.