IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i21p7317-d671970.html
   My bibliography  Save this article

Thermal Storage for District Cooling—Implications for Renewable Energy Transition

Author

Listed:
  • Efstathios E. Michaelides

    (Department of Engineering, Texas Christian University, Fort Worth, TX 76129, USA)

Abstract

The utilization of air conditioning in public and private buildings is continuously increasing globally and is one of the major factors fueling the growth of the global electricity demand. The higher utilization of renewable energy sources and the transition of the electricity-generating industry to renewable energy sources requires significant energy storage in order to avoid supply–demand mismatches. This storage-regeneration process entails dissipation, which leads to higher energy generation loads. Both the energy generation and the required storage may be reduced using thermal energy storage to provide domestic comfort in buildings. The development and utilization of thermal storage, achieved by chilled water, in a community of two thousand buildings located in the North Texas region are proven to have profound and beneficial effects on the necessary infrastructure to make this community independent of the grid and self-sufficient with renewable energy. The simulations show that both the necessary photovoltaics rating and the capacity of the electric energy storage system are significantly reduced when thermal storage with a chilled water system is used during the air conditioning season.

Suggested Citation

  • Efstathios E. Michaelides, 2021. "Thermal Storage for District Cooling—Implications for Renewable Energy Transition," Energies, MDPI, vol. 14(21), pages 1-13, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7317-:d:671970
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/21/7317/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/21/7317/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Efstathios E. Michaelides, 2021. "Thermodynamics, Energy Dissipation, and Figures of Merit of Energy Storage Systems—A Critical Review," Energies, MDPI, vol. 14(19), pages 1-41, September.
    2. Mai, Trieu & Lopez, Anthony & Mowers, Matthew & Lantz, Eric, 2021. "Interactions of wind energy project siting, wind resource potential, and the evolution of the U.S. power system," Energy, Elsevier, vol. 223(C).
    3. Zakeri, Behnam & Syri, Sanna, 2015. "Electrical energy storage systems: A comparative life cycle cost analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 569-596.
    4. Waite, Michael & Cohen, Elliot & Torbey, Henri & Piccirilli, Michael & Tian, Yu & Modi, Vijay, 2017. "Global trends in urban electricity demands for cooling and heating," Energy, Elsevier, vol. 127(C), pages 786-802.
    5. Sailor, David J. & Smith, Michael & Hart, Melissa, 2008. "Climate change implications for wind power resources in the Northwest United States," Renewable Energy, Elsevier, vol. 33(11), pages 2393-2406.
    6. Leonard, Matthew D. & Michaelides, Efstathios E., 2018. "Grid-independent residential buildings with renewable energy sources," Energy, Elsevier, vol. 148(C), pages 448-460.
    7. de Castro, Carlos & Mediavilla, Margarita & Miguel, Luis Javier & Frechoso, Fernando, 2011. "Global wind power potential: Physical and technological limits," Energy Policy, Elsevier, vol. 39(10), pages 6677-6682, October.
    8. Headley, Alexander J. & Copp, David A., 2020. "Energy storage sizing for grid compatibility of intermittent renewable resources: A California case study," Energy, Elsevier, vol. 198(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Efstathios E. Michaelides, 2022. "Transition to Renewable Energy for Communities: Energy Storage Requirements and Dissipation," Energies, MDPI, vol. 15(16), pages 1-11, August.
    2. DeValeria, Michelle K. & Michaelides, Efstathios E. & Michaelides, Dimitrios N., 2020. "Energy and thermal storage in clusters of grid-independent buildings," Energy, Elsevier, vol. 190(C).
    3. Efstathios E. Michaelides, 2021. "Thermodynamics, Energy Dissipation, and Figures of Merit of Energy Storage Systems—A Critical Review," Energies, MDPI, vol. 14(19), pages 1-41, September.
    4. Huang, Junling & McElroy, Michael B., 2015. "A 32-year perspective on the origin of wind energy in a warming climate," Renewable Energy, Elsevier, vol. 77(C), pages 482-492.
    5. Chen, Long Xiang & Xie, Mei Na & Zhao, Pan Pan & Wang, Feng Xiang & Hu, Peng & Wang, Dong Xiang, 2018. "A novel isobaric adiabatic compressed air energy storage (IA-CAES) system on the base of volatile fluid," Applied Energy, Elsevier, vol. 210(C), pages 198-210.
    6. Koecklin, Manuel Tong & Longoria, Genaro & Fitiwi, Desta Z. & DeCarolis, Joseph F. & Curtis, John, 2021. "Public acceptance of renewable electricity generation and transmission network developments: Insights from Ireland," Energy Policy, Elsevier, vol. 151(C).
    7. Huang, Qisheng & Xu, Yunjian & Courcoubetis, Costas, 2020. "Stackelberg competition between merchant and regulated storage investment in wholesale electricity markets," Applied Energy, Elsevier, vol. 264(C).
    8. Burton, N.A. & Padilla, R.V. & Rose, A. & Habibullah, H., 2021. "Increasing the efficiency of hydrogen production from solar powered water electrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    9. Terlouw, Tom & AlSkaif, Tarek & Bauer, Christian & van Sark, Wilfried, 2019. "Optimal energy management in all-electric residential energy systems with heat and electricity storage," Applied Energy, Elsevier, vol. 254(C).
    10. Masebinu, S.O. & Akinlabi, E.T. & Muzenda, E. & Aboyade, A.O., 2017. "Techno-economics and environmental analysis of energy storage for a student residence under a South African time-of-use tariff rate," Energy, Elsevier, vol. 135(C), pages 413-429.
    11. Tong Koecklin, Manuel & Fitiwi, Desta & de Carolis, Joseph F. & Curtis, John, 2020. "Renewable electricity generation and transmission network developments in light of public opposition: Insights from Ireland," Papers WP653, Economic and Social Research Institute (ESRI).
    12. Vassilis M. Charitopoulos & Mathilde Fajardy & Chi Kong Chyong & David M. Reiner, 2022. "The case of 100% electrification of domestic heat in Great Britain," Working Papers EPRG2206, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    13. Behnam Zakeri & Samuli Rinne & Sanna Syri, 2015. "Wind Integration into Energy Systems with a High Share of Nuclear Power—What Are the Compromises?," Energies, MDPI, vol. 8(4), pages 1-35, March.
    14. Julien Walzberg & Annika Eberle, 2023. "Modeling Systems’ Disruption and Social Acceptance—A Proof-of-Concept Leveraging Reinforcement Learning," Sustainability, MDPI, vol. 15(13), pages 1-13, June.
    15. Lan, Hai & Wen, Shuli & Hong, Ying-Yi & Yu, David C. & Zhang, Lijun, 2015. "Optimal sizing of hybrid PV/diesel/battery in ship power system," Applied Energy, Elsevier, vol. 158(C), pages 26-34.
    16. Hong, Sanghyun & Kim, Eunsung & Jeong, Saerok, 2023. "Evaluating the sustainability of the hydrogen economy using multi-criteria decision-making analysis in Korea," Renewable Energy, Elsevier, vol. 204(C), pages 485-492.
    17. Tozzi, Peter & Jo, Jin Ho, 2017. "A comparative analysis of renewable energy simulation tools: Performance simulation model vs. system optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 390-398.
    18. Nieto, Jaime & Carpintero, Óscar & Miguel, Luis J. & de Blas, Ignacio, 2020. "Macroeconomic modelling under energy constraints: Global low carbon transition scenarios," Energy Policy, Elsevier, vol. 137(C).
    19. Yang, Jibin & Xu, Xiaohui & Peng, Yiqiang & Zhang, Jiye & Song, Pengyun, 2019. "Modeling and optimal energy management strategy for a catenary-battery-ultracapacitor based hybrid tramway," Energy, Elsevier, vol. 183(C), pages 1123-1135.
    20. Lucy Cradden & Gareth Harrison & John Chick, 2012. "Will climate change impact on wind power development in the UK?," Climatic Change, Springer, vol. 115(3), pages 837-852, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7317-:d:671970. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.