IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i16p5896-d888067.html
   My bibliography  Save this article

Transition to Renewable Energy for Communities: Energy Storage Requirements and Dissipation

Author

Listed:
  • Efstathios E. Michaelides

    (Department of Engineering, TCU, Fort Worth, TX 76129, USA)

Abstract

The transition of residential communities to renewable energy sources is one of the first steps for the decarbonization of the energy sector, the reduction of CO 2 emissions, and the mitigation of global climate change. This study provides information for the development of a microgrid, supplied by wind and solar energy, which meets the hourly energy demand of a community of 10,000 houses in the North Texas region; hydrogen is used as the energy storage medium. The results are presented for two cases: (a) when the renewable energy sources supply only the electricity demand of the community, and (b) when these sources provide the electricity as well as the heating needs (for space heating and hot water) of the community. The results show that such a community can be decarbonized with combinations of wind and solar installations. The energy storage requirements are between 2.7 m 3 per household and 2.2 m 3 per household. There is significant dissipation in the storage–regeneration processes—close to 30% of the current annual electricity demand. The entire decarbonization (electricity and heat) of this community will result in approximately 87,500 tons of CO 2 emissions avoidance.

Suggested Citation

  • Efstathios E. Michaelides, 2022. "Transition to Renewable Energy for Communities: Energy Storage Requirements and Dissipation," Energies, MDPI, vol. 15(16), pages 1-11, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:16:p:5896-:d:888067
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/16/5896/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/16/5896/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Efstathios E. Michaelides, 2021. "Thermodynamics, Energy Dissipation, and Figures of Merit of Energy Storage Systems—A Critical Review," Energies, MDPI, vol. 14(19), pages 1-41, September.
    2. Marcin Zygmunt & Dariusz Gawin, 2022. "Application of the Renewable Energy Sources at District Scale—A Case Study of the Suburban Area," Energies, MDPI, vol. 15(2), pages 1-16, January.
    3. Munir Husein & Hyung-Ju Kim & Il-Yop Chung, 2020. "The Impact of Policy and Technology Parameters on the Economics of Microgrids for Rural Electrification: A Case Study of Remote Communities in Bolivia," Energies, MDPI, vol. 13(4), pages 1-26, February.
    4. Leonard, Matthew D. & Michaelides, Efstathios E., 2018. "Grid-independent residential buildings with renewable energy sources," Energy, Elsevier, vol. 148(C), pages 448-460.
    5. Ruben Hidalgo-Leon & Fernando Amoroso & Javier Urquizo & Viviana Villavicencio & Miguel Torres & Pritpal Singh & Guillermo Soriano, 2022. "Feasibility Study for Off-Grid Hybrid Power Systems Considering an Energy Efficiency Initiative for an Island in Ecuador," Energies, MDPI, vol. 15(5), pages 1-25, February.
    6. Rovick Tarife & Yosuke Nakanishi & Yining Chen & Yicheng Zhou & Noel Estoperez & Anacita Tahud, 2022. "Optimization of Hybrid Renewable Energy Microgrid for Rural Agricultural Area in Southern Philippines," Energies, MDPI, vol. 15(6), pages 1-29, March.
    7. Khrisydel Rhea M. Supapo & Lorafe Lozano & Ian Dominic F. Tabañag & Edward M. Querikiol, 2022. "A Backcasting Analysis toward a 100% Renewable Energy Transition by 2040 for Off-Grid Islands," Energies, MDPI, vol. 15(13), pages 1-19, June.
    8. Loiy Al-Ghussain & Mohammad Abujubbeh & Adnan Darwish Ahmad & Ahmad M. Abubaker & Onur Taylan & Murat Fahrioglu & Nelson K. Akafuah, 2020. "100% Renewable Energy Grid for Rural Electrification of Remote Areas: A Case Study in Jordan," Energies, MDPI, vol. 13(18), pages 1-18, September.
    9. Headley, Alexander J. & Copp, David A., 2020. "Energy storage sizing for grid compatibility of intermittent renewable resources: A California case study," Energy, Elsevier, vol. 198(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daria Kostecka-Jurczyk & Katarzyna Marak & Mirosław Struś, 2022. "Economic Conditions for the Development of Energy Cooperatives in Poland," Energies, MDPI, vol. 15(18), pages 1-14, September.
    2. Nikolay E. Galushkin & Nataliya N. Yazvinskaya & Dmitriy N. Galushkin, 2022. "A Promising Energy Storage System Based on High-Capacity Metal Hydrides," Energies, MDPI, vol. 15(21), pages 1-12, October.
    3. Maciej Sołtysik & Mariusz Kozakiewicz & Jakub Jasiński, 2022. "Improvement of Operating Efficiency of Energy Cooperatives with the Use of “Crypto-Coin Mining”," Energies, MDPI, vol. 15(21), pages 1-25, October.
    4. Weiqiang Qiu & Sheng Zhou & Yang Yang & Xiaoying Lv & Ting Lv & Yuge Chen & Ying Huang & Kunming Zhang & Hongfei Yu & Yunchu Wang & Yuanqian Ma & Zhenzhi Lin, 2023. "Application Prospect, Development Status and Key Technologies of Shared Energy Storage toward Renewable Energy Accommodation Scenario in the Context of China," Energies, MDPI, vol. 16(2), pages 1-21, January.
    5. Maciej Sołtysik & Karolina Mucha-Kuś & Jacek Kamiński, 2022. "The New Model of Energy Cluster Management and Functioning," Energies, MDPI, vol. 15(18), pages 1-18, September.
    6. Hamed, Mohammad M. & Mohammed, Ali & Olabi, Abdul Ghani, 2023. "Renewable energy adoption decisions in Jordan's industrial sector: Statistical analysis with unobserved heterogeneity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Efstathios E. Michaelides, 2021. "Thermal Storage for District Cooling—Implications for Renewable Energy Transition," Energies, MDPI, vol. 14(21), pages 1-13, November.
    2. Paweł Dworak & Andrzej Mrozik & Agata Korzelecka-Orkisz & Adam Tański & Krzysztof Formicki, 2023. "Energy Self-Sufficiency of a Salmonids Breeding Facility in the Recirculating Aquaculture System," Energies, MDPI, vol. 16(6), pages 1-22, March.
    3. Maciej Żołądek & Alexandros Kafetzis & Rafał Figaj & Kyriakos Panopoulos, 2022. "Energy-Economic Assessment of Islanded Microgrid with Wind Turbine, Photovoltaic Field, Wood Gasifier, Battery, and Hydrogen Energy Storage," Sustainability, MDPI, vol. 14(19), pages 1-23, September.
    4. Feras Alasali & Mohammad Salameh & Ali Semrin & Khaled Nusair & Naser El-Naily & William Holderbaum, 2022. "Optimal Controllers and Configurations of 100% PV and Energy Storage Systems for a Microgrid: The Case Study of a Small Town in Jordan," Sustainability, MDPI, vol. 14(13), pages 1-20, July.
    5. Hong, Sanghyun & Kim, Eunsung & Jeong, Saerok, 2023. "Evaluating the sustainability of the hydrogen economy using multi-criteria decision-making analysis in Korea," Renewable Energy, Elsevier, vol. 204(C), pages 485-492.
    6. Diego Mendoza Osorio & Javier Rosero Garcia, 2023. "Convex Stochastic Approaches for the Optimal Allocation of Distributed Energy Resources in AC Distribution Networks with Measurements Fitted to a Continuous Probability Distribution Function," Energies, MDPI, vol. 16(14), pages 1-27, July.
    7. Guglielmo D’Amico & Filippo Petroni & Salvatore Vergine, 2022. "Ramp Rate Limitation of Wind Power: An Overview," Energies, MDPI, vol. 15(16), pages 1-15, August.
    8. Micke Talvi & Tomi Roinila & Kari Lappalainen, 2023. "Effects of Ramp Rate Limit on Sizing of Energy Storage Systems for PV, Wind and PV–Wind Power Plants," Energies, MDPI, vol. 16(11), pages 1-18, May.
    9. Rovick Tarife & Yosuke Nakanishi & Yicheng Zhou & Noel Estoperez & Anacita Tahud, 2023. "Integrated GIS and Fuzzy-AHP Framework for Suitability Analysis of Hybrid Renewable Energy Systems: A Case in Southern Philippines," Sustainability, MDPI, vol. 15(3), pages 1-25, January.
    10. Wilberforce, Tabbi & El Hassan, Zaki & Durrant, A. & Thompson, J. & Soudan, Bassel & Olabi, A.G., 2019. "Overview of ocean power technology," Energy, Elsevier, vol. 175(C), pages 165-181.
    11. Brumana, Giovanni & Franchini, Giuseppe & Ghirardi, Elisa & Perdichizzi, Antonio, 2022. "Techno-economic optimization of hybrid power generation systems: A renewables community case study," Energy, Elsevier, vol. 246(C).
    12. Nikolay E. Galushkin & Nataliya N. Yazvinskaya & Dmitriy N. Galushkin, 2022. "A Promising Energy Storage System Based on High-Capacity Metal Hydrides," Energies, MDPI, vol. 15(21), pages 1-12, October.
    13. Pillot, Benjamin & Al-Kurdi, Nadeem & Gervet, Carmen & Linguet, Laurent, 2021. "Optimizing operational costs and PV production at utility scale: An optical fiber network analogy for solar park clustering," Applied Energy, Elsevier, vol. 298(C).
    14. Samrat Chakraborty & Debottam Mukherjee & Pabitra Kumar Guchhait & Somudeep Bhattacharjee & Almoataz Youssef Abdelaziz & Adel El-Shahat, 2023. "Optimum Design of a Renewable-Based Integrated Energy System in Autonomous Mode for a Remote Hilly Location in Northeastern India," Energies, MDPI, vol. 16(4), pages 1-30, February.
    15. Shayan, Mostafa Esmaeili & Najafi, Gholamhassan & Ghobadian, Barat & Gorjian, Shiva & Mamat, Rizalman & Ghazali, Mohd Fairusham, 2022. "Multi-microgrid optimization and energy management under boost voltage converter with Markov prediction chain and dynamic decision algorithm," Renewable Energy, Elsevier, vol. 201(P2), pages 179-189.
    16. Copp, David A. & Nguyen, Tu A. & Byrne, Raymond H. & Chalamala, Babu R., 2022. "Optimal sizing of distributed energy resources for planning 100% renewable electric power systems," Energy, Elsevier, vol. 239(PE).
    17. Al-Saadi, Saleh Nasser & Shaaban, Awni K., 2019. "Zero energy building (ZEB) in a cooling dominated climate of Oman: Design and energy performance analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 299-316.
    18. Daniel Kitamura & Leonardo Willer & Bruno Dias & Tiago Soares, 2023. "Risk-Averse Stochastic Programming for Planning Hybrid Electrical Energy Systems: A Brazilian Case," Energies, MDPI, vol. 16(3), pages 1-16, February.
    19. Yan, Zhe & Zhang, Yongming & Liang, Runqi & Jin, Wenrui, 2020. "An allocative method of hybrid electrical and thermal energy storage capacity for load shifting based on seasonal difference in district energy planning," Energy, Elsevier, vol. 207(C).
    20. Àlex Alonso-Travesset & Diederik Coppitters & Helena Martín & Jordi de la Hoz, 2023. "Economic and Regulatory Uncertainty in Renewable Energy System Design: A Review," Energies, MDPI, vol. 16(2), pages 1-30, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:16:p:5896-:d:888067. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.