IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i21p7182-d670303.html
   My bibliography  Save this article

Acoustic Signature Analysis and Sound Source Localization for a Three-Phase AC Induction Motor

Author

Listed:
  • Anand Krishnasarma

    (NVH & Experimental Mechanics Laboratory, Kettering University, 1700 University Avenue, Flint, MI 48504, USA)

  • Seyed Jamaleddin Mostafavi Yazdi

    (NVH & Experimental Mechanics Laboratory, Kettering University, 1700 University Avenue, Flint, MI 48504, USA)

  • Allan Taylor

    (NVH & Experimental Mechanics Laboratory, Kettering University, 1700 University Avenue, Flint, MI 48504, USA)

  • Daniel Ludwigsen

    (NVH & Experimental Mechanics Laboratory, Kettering University, 1700 University Avenue, Flint, MI 48504, USA)

  • Javad Baqersad

    (NVH & Experimental Mechanics Laboratory, Kettering University, 1700 University Avenue, Flint, MI 48504, USA)

Abstract

As part of the recent electrification of the transportation industry, internal combustion engines are being coupled with or replaced by electric motors. This movement towards an electrified drivetrain poses new noise, vibration, and harshness (NVH) challenges related to electric motors. In this paper, the acoustic signature of an electric motor was analyzed to obtain a better understanding of the sound generated by these motors. This work provides an insight into an acoustic measurement technique that can be used to identify certain frequency bands that significantly contribute to the perceived sound. In the first part, the structural response of the motor was correlated with its acoustic spectra. Furthermore, data from acoustic and structural measurements were used to analyze the order content of the signal and identify critical contributors to the overall perceived sound. The differences between data captured by microphones in different positions around the motor helped to localize components of the overall sound. The results provide some discussion about techniques to decrease the overall sound. The technique described in this paper can be extended to fan-cooled motors that are used in vehicles such as golf carts or as auxiliary motors in electric/hybrid vehicles, as well as across a wide range of industrial applications.

Suggested Citation

  • Anand Krishnasarma & Seyed Jamaleddin Mostafavi Yazdi & Allan Taylor & Daniel Ludwigsen & Javad Baqersad, 2021. "Acoustic Signature Analysis and Sound Source Localization for a Three-Phase AC Induction Motor," Energies, MDPI, vol. 14(21), pages 1-14, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7182-:d:670303
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/21/7182/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/21/7182/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hong-Chan Chang & Yu-Ming Jheng & Cheng-Chien Kuo & Yu-Min Hsueh, 2019. "Induction Motors Condition Monitoring System with Fault Diagnosis Using a Hybrid Approach," Energies, MDPI, vol. 12(8), pages 1-12, April.
    2. Qin, Yechen & Tang, Xiaolin & Jia, Tong & Duan, Ziwen & Zhang, Jieming & Li, Yinong & Zheng, Ling, 2020. "Noise and vibration suppression in hybrid electric vehicles: State of the art and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    3. Sabin Sathyan & Ugur Aydin & Anouar Belahcen, 2020. "Acoustic Noise Computation of Electrical Motors Using the Boundary Element Method," Energies, MDPI, vol. 13(1), pages 1-13, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Seyed Jamaleddin Mostafavi Yazdi & Seongchan Pack & Foroogh Rouhollahi & Javad Baqersad, 2023. "A Modeling Framework to Develop Materials with Improved Noise and Vibration Performance for Electric Vehicles," Energies, MDPI, vol. 16(9), pages 1-17, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yifei & Luo, Shijing & Kwok, Holly Y.H. & Pan, Wending & Zhang, Yingguang & Zhao, Xiaolong & Leung, Dennis Y.C., 2021. "Microfluidic fuel cells with different types of fuels: A prospective review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    2. Wagner Fontes Godoy & Daniel Morinigo-Sotelo & Oscar Duque-Perez & Ivan Nunes da Silva & Alessandro Goedtel & Rodrigo Henrique Cunha Palácios, 2020. "Estimation of Bearing Fault Severity in Line-Connected and Inverter-Fed Three-Phase Induction Motors," Energies, MDPI, vol. 13(13), pages 1-17, July.
    3. Penghui Qiang & Peng Wu & Tao Pan & Huaiquan Zang, 2021. "Real-Time Approximate Equivalent Consumption Minimization Strategy Based on the Single-Shaft Parallel Hybrid Powertrain," Energies, MDPI, vol. 14(23), pages 1-22, November.
    4. Mariano Gallo & Mario Marinelli, 2020. "Sustainable Mobility: A Review of Possible Actions and Policies," Sustainability, MDPI, vol. 12(18), pages 1-39, September.
    5. Hongqing Chu & Wentong Shi & Yuyao Jiang & Bingzhao Gao, 2023. "Driveline Oscillation Damping for Hybrid Electric Vehicles Using Extended-State-Observer-Based Compensator," Sustainability, MDPI, vol. 15(10), pages 1-16, May.
    6. Kouridis, Ch & Vlachokostas, Ch, 2022. "Towards decarbonizing road transport: Environmental and social benefit of vehicle fleet electrification in urban areas of Greece," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    7. Kinsella, L. & Stefaniec, A. & Foley, A. & Caulfield, B., 2023. "Pathways to decarbonising the transport sector: The impacts of electrifying taxi fleets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    8. Branislav Dobrucky & Slavomir Kascak & Michal Frivaldsky & Michal Prazenica, 2021. "Determination and Compensation of Non-Active Torques for Parallel HEV Using PMSM/IM Motor(s)," Energies, MDPI, vol. 14(10), pages 1-26, May.
    9. Dusan Maga & Jaromir Hrad & Jiri Hajek & Akeel Othman, 2021. "Application of Minimum Energy Effect to Numerical Reconstruction of Insolation Curves," Energies, MDPI, vol. 14(17), pages 1-18, August.
    10. Carlos Candelo-Zuluaga & Jordi-Roger Riba & Carlos López-Torres & Antoni Garcia, 2019. "Detection of Inter-Turn Faults in Multi-Phase Ferrite-PM Assisted Synchronous Reluctance Machines," Energies, MDPI, vol. 12(14), pages 1-15, July.
    11. Ma, Shuai & Lin, Meng & Lin, Tzu-En & Lan, Tian & Liao, Xun & Maréchal, François & Van herle, Jan & Yang, Yongping & Dong, Changqing & Wang, Ligang, 2021. "Fuel cell-battery hybrid systems for mobility and off-grid applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    12. Mlungisi Ntombela & Kabeya Musasa, 2023. "Load Profile and Load Flow Analysis for a Grid System with Electric Vehicles Using a Hybrid Optimization Algorithm," Sustainability, MDPI, vol. 15(12), pages 1-23, June.
    13. Xiao, B. & Ruan, J. & Yang, W. & Walker, P.D. & Zhang, N., 2021. "A review of pivotal energy management strategies for extended range electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    14. Bhatti, Ghanishtha & Mohan, Harshit & Raja Singh, R., 2021. "Towards the future of smart electric vehicles: Digital twin technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    15. Arkadiusz Dziechciarz & Aron Popp & Claudia Marțiș & Maciej Sułowicz, 2022. "Analysis of NVH Behavior of Synchronous Reluctance Machine for EV Applications," Energies, MDPI, vol. 15(8), pages 1-22, April.
    16. Guo, Ningyuan & Zhang, Xudong & Zou, Yuan & Guo, Lingxiong & Du, Guodong, 2021. "Real-time predictive energy management of plug-in hybrid electric vehicles for coordination of fuel economy and battery degradation," Energy, Elsevier, vol. 214(C).
    17. Arkadiusz Duda & Maciej Sułowicz, 2020. "A New Effective Method of Induction Machine Condition Assessment Based on Zero-Sequence Voltage (ZSV) Symptoms," Energies, MDPI, vol. 13(14), pages 1-26, July.
    18. Jordi Burriel-Valencia & Ruben Puche-Panadero & Javier Martinez-Roman & Angel Sapena-Baño & Martin Riera-Guasp & Manuel Pineda-Sánchez, 2019. "Multi-Band Frequency Window for Time-Frequency Fault Diagnosis of Induction Machines," Energies, MDPI, vol. 12(17), pages 1-18, August.
    19. Zhang, Mingze & Li, Weidong & Yu, Samson Shenglong & Wen, Kerui & Zhou, Chen & Shi, Peng, 2021. "A unified configurational optimization framework for battery swapping and charging stations considering electric vehicle uncertainty," Energy, Elsevier, vol. 218(C).
    20. Patxi Gonzalez & Garikoitz Buigues & Angel Javier Mazon, 2023. "Noise in Electric Motors: A Comprehensive Review," Energies, MDPI, vol. 16(14), pages 1-22, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7182-:d:670303. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.