IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i1p245-d304890.html
   My bibliography  Save this article

Acoustic Noise Computation of Electrical Motors Using the Boundary Element Method

Author

Listed:
  • Sabin Sathyan

    (Department of Electrical Engineering and Automation, Aalto University, PO Box, 15500 Helsinki, Finland)

  • Ugur Aydin

    (Department of Electrical Engineering and Automation, Aalto University, PO Box, 15500 Helsinki, Finland)

  • Anouar Belahcen

    (Department of Electrical Engineering and Automation, Aalto University, PO Box, 15500 Helsinki, Finland
    Department of Electrical Tallinn University of Technology Power Engineering and Mechatronics, 19086 Tallinn, Estonia)

Abstract

This paper presents a numerical method and computational results for acoustic noise of electromagnetic origin generated by an induction motor. The computation of noise incorporates three levels of numerical calculation steps, combining both the finite element method and boundary element method. The role of magnetic forces in the production of acoustic noise is established in the paper by showing the magneto-mechanical and vibro-acoustic pathway of energy. The conversion of electrical energy into acoustic energy in an electrical motor through electromagnetic, mechanical, or acoustic platforms is illustrated through numerical computations of magnetic forces, mechanical deformation, and acoustic noise. The magnetic forces were computed through 2D electromagnetic finite element simulation, and the deformation of the stator due to these forces was calculated using 3D structural finite element simulation. Finally, boundary element-based computation was employed to calculate the sound pressure and sound power level in decibels. The use of the boundary element method instead of the finite element method in acoustic computation reduces the computational cost because, unlike finite element analysis, the boundary element approach does not require heavy meshing to model the air surrounding the motor.

Suggested Citation

  • Sabin Sathyan & Ugur Aydin & Anouar Belahcen, 2020. "Acoustic Noise Computation of Electrical Motors Using the Boundary Element Method," Energies, MDPI, vol. 13(1), pages 1-13, January.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:1:p:245-:d:304890
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/1/245/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/1/245/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Artem Ermolaev & Vladimir Erofeev & Aleksandr Plekhov & Dmitry Titov, 2022. "Magnetic Vibration in Induction Motor Caused by Supply Voltage Distortion," Energies, MDPI, vol. 15(24), pages 1-11, December.
    2. Anand Krishnasarma & Seyed Jamaleddin Mostafavi Yazdi & Allan Taylor & Daniel Ludwigsen & Javad Baqersad, 2021. "Acoustic Signature Analysis and Sound Source Localization for a Three-Phase AC Induction Motor," Energies, MDPI, vol. 14(21), pages 1-14, November.
    3. Xiaohua Song & Jing Liu & Chaobo Chen & Song Gao, 2022. "Advanced Methods in Rotating Machines," Energies, MDPI, vol. 15(15), pages 1-3, July.
    4. Dusan Maga & Jaromir Hrad & Jiri Hajek & Akeel Othman, 2021. "Application of Minimum Energy Effect to Numerical Reconstruction of Insolation Curves," Energies, MDPI, vol. 14(17), pages 1-18, August.
    5. Piotr Bortnowski & Anna Nowak-Szpak & Robert Król & Maksymilian Ozdoba, 2021. "Analysis and Distribution of Conveyor Belt Noise Sources under Laboratory Conditions," Sustainability, MDPI, vol. 13(4), pages 1-14, February.
    6. Arkadiusz Dziechciarz & Aron Popp & Claudia Marțiș & Maciej Sułowicz, 2022. "Analysis of NVH Behavior of Synchronous Reluctance Machine for EV Applications," Energies, MDPI, vol. 15(8), pages 1-22, April.
    7. Patxi Gonzalez & Garikoitz Buigues & Angel Javier Mazon, 2023. "Noise in Electric Motors: A Comprehensive Review," Energies, MDPI, vol. 16(14), pages 1-22, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:1:p:245-:d:304890. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.