IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i21p7107-d669667.html
   My bibliography  Save this article

Multi-Time-Scale Optimal Scheduling in Active Distribution Network with Voltage Stability Constraints

Author

Listed:
  • Tianhao Song

    (College of Electrical and Power Engineering, Taiyuan University of Technology, Taiyuan 030024, China)

  • Xiaoqing Han

    (College of Electrical and Power Engineering, Taiyuan University of Technology, Taiyuan 030024, China)

  • Baifu Zhang

    (College of Electrical and Power Engineering, Taiyuan University of Technology, Taiyuan 030024, China)

Abstract

The uncertainty associated with loads and renewable-energy sources affects active distribution networks in terms of the operation and voltage stability on different time scales. To address this problem, a multi-time-scale voltage stability constrained optimal scheduling framework is proposed, which includes a day-ahead model with a coarse-grained time resolution and an intra-day model with a fine-grained time resolution. The day-ahead economic-scheduling model maps out a scheme to operate different types of devices with the aim of minimizing the network losses. Following the scheme, the intra-day corrective-adjustment model based on model predictive control is proposed to regulate the flexible devices, such as the energy storage systems and the photovoltaic converters. In particular, the proposed optimal scheduling framework embeds a voltage stability constraint which is constructed by using a novel index, defined based on the Distflow model Jacobian. As the index at each bus is a linear function of the locally measurable power flow variables, the proposed constraint does not introduce additional computational burdens. Simulation results demonstrate the necessity and effectiveness of the proposed multi-time-scale voltage stability constrained optimal scheduling model. The results also show that the variation trend of the proposed index is consistent with that of the commonly used voltage stability index.

Suggested Citation

  • Tianhao Song & Xiaoqing Han & Baifu Zhang, 2021. "Multi-Time-Scale Optimal Scheduling in Active Distribution Network with Voltage Stability Constraints," Energies, MDPI, vol. 14(21), pages 1-20, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7107-:d:669667
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/21/7107/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/21/7107/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Arun Onlam & Daranpob Yodphet & Rongrit Chatthaworn & Chayada Surawanitkun & Apirat Siritaratiwat & Pirat Khunkitti, 2019. "Power Loss Minimization and Voltage Stability Improvement in Electrical Distribution System via Network Reconfiguration and Distributed Generation Placement Using Novel Adaptive Shuffled Frogs Leaping," Energies, MDPI, vol. 12(3), pages 1-12, February.
    2. Oscar Danilo Montoya & Walter Gil-González & Andrés Arias-Londoño & Arul Rajagopalan & Jesus C. Hernández, 2020. "Voltage Stability Analysis in Medium-Voltage Distribution Networks Using a Second-Order Cone Approximation," Energies, MDPI, vol. 13(21), pages 1-15, November.
    3. Maharjan, Salish & Sampath Kumar, Dhivya & Khambadkone, Ashwin M., 2020. "Enhancing the voltage stability of distribution network during PV ramping conditions with variable speed drive loads," Applied Energy, Elsevier, vol. 264(C).
    4. Ma, Wei & Wang, Wei & Chen, Zhe & Wu, Xuezhi & Hu, Ruonan & Tang, Fen & Zhang, Weige, 2021. "Voltage regulation methods for active distribution networks considering the reactive power optimization of substations," Applied Energy, Elsevier, vol. 284(C).
    5. Sultana, U. & Khairuddin, Azhar B. & Aman, M.M. & Mokhtar, A.S. & Zareen, N., 2016. "A review of optimum DG placement based on minimization of power losses and voltage stability enhancement of distribution system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 363-378.
    6. Jay, Devika & Swarup, K.S., 2021. "A comprehensive survey on reactive power ancillary service markets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    7. Songkai Liu & Ruoyuan Shi & Yuehua Huang & Xin Li & Zhenhua Li & Lingyun Wang & Dan Mao & Lihuang Liu & Siyang Liao & Menglin Zhang & Guanghui Yan & Lian Liu, 2021. "A Data-Driven and Data-Based Framework for Online Voltage Stability Assessment Using Partial Mutual Information and Iterated Random Forest," Energies, MDPI, vol. 14(3), pages 1-16, January.
    8. Veerasamy, Veerapandiyan & Abdul Wahab, Noor Izzri & Ramachandran, Rajeswari & Othman, Mohammad Lutfi & Hizam, Hashim & Devendran, Vidhya Sagar & Irudayaraj, Andrew Xavier Raj & Vinayagam, Arangarajan, 2021. "Recurrent network based power flow solution for voltage stability assessment and improvement with distributed energy sources," Applied Energy, Elsevier, vol. 302(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S. Angalaeswari & P. Sanjeevikumar & K. Jamuna & Zbigniew Leonowicz, 2020. "Hybrid PIPSO-SQP Algorithm for Real Power Loss Minimization in Radial Distribution Systems with Optimal Placement of Distributed Generation," Sustainability, MDPI, vol. 12(14), pages 1-21, July.
    2. A.S. Jameel Hassan & Umar Marikkar & G.W. Kasun Prabhath & Aranee Balachandran & W.G. Chaminda Bandara & Parakrama B. Ekanayake & Roshan I. Godaliyadda & Janaka B. Ekanayake, 2021. "A Sensitivity Matrix Approach Using Two-Stage Optimization for Voltage Regulation of LV Networks with High PV Penetration," Energies, MDPI, vol. 14(20), pages 1-24, October.
    3. Theofilos A. Papadopoulos & Kalliopi D. Pippi & Georgios A. Barzegkar-Ntovom & Eleftherios O. Kontis & Angelos I. Nousdilis & Christos L. Athanasiadis & Georgios C. Kryonidis, 2023. "Validation of a Holistic System for Operational Analysis and Provision of Ancillary Services in Active Distribution Networks," Energies, MDPI, vol. 16(6), pages 1-27, March.
    4. Lu, Yu & Xiang, Yue & Huang, Yuan & Yu, Bin & Weng, Liguo & Liu, Junyong, 2023. "Deep reinforcement learning based optimal scheduling of active distribution system considering distributed generation, energy storage and flexible load," Energy, Elsevier, vol. 271(C).
    5. Nasreddine Belbachir & Mohamed Zellagui & Samir Settoul & Claude Ziad El-Bayeh & Ragab A. El-Sehiemy, 2023. "Multi Dimension-Based Optimal Allocation of Uncertain Renewable Distributed Generation Outputs with Seasonal Source-Load Power Uncertainties in Electrical Distribution Network Using Marine Predator Al," Energies, MDPI, vol. 16(4), pages 1-24, February.
    6. Davi-Arderius, Daniel & Schittekatte, Tim, 2023. "Carbon emissions impacts of operational network constraints: The case of Spain during the Covid-19 crisis," Energy Economics, Elsevier, vol. 128(C).
    7. Wang, Yi & Qiu, Dawei & Sun, Mingyang & Strbac, Goran & Gao, Zhiwei, 2023. "Secure energy management of multi-energy microgrid: A physical-informed safe reinforcement learning approach," Applied Energy, Elsevier, vol. 335(C).
    8. Zhu, Xingxu & Hou, Xiangchen & Li, Junhui & Yan, Gangui & Li, Cuiping & Wang, Dongbo, 2023. "Distributed online prediction optimization algorithm for distributed energy resources considering the multi-periods optimal operation," Applied Energy, Elsevier, vol. 348(C).
    9. Kandasamy, Jeevitha & Ramachandran, Rajeswari & Veerasamy, Veerapandiyan & Irudayaraj, Andrew Xavier Raj, 2024. "Distributed leader-follower based adaptive consensus control for networked microgrids," Applied Energy, Elsevier, vol. 353(PA).
    10. Sultana, U. & Khairuddin, Azhar B. & Sultana, Beenish & Rasheed, Nadia & Qazi, Sajid Hussain & Malik, Nimra Riaz, 2018. "Placement and sizing of multiple distributed generation and battery swapping stations using grasshopper optimizer algorithm," Energy, Elsevier, vol. 165(PA), pages 408-421.
    11. Younes Zahraoui & Ibrahim Alhamrouni & Saad Mekhilef & M. Reyasudin Basir Khan & Mehdi Seyedmahmoudian & Alex Stojcevski & Ben Horan, 2021. "Energy Management System in Microgrids: A Comprehensive Review," Sustainability, MDPI, vol. 13(19), pages 1-33, September.
    12. Songkai Liu & Dan Mao & Tianliang Xue & Fei Tang & Xin Li & Lihuang Liu & Ruoyuan Shi & Siyang Liao & Menglin Zhang, 2021. "A Data-Driven Approach for Online Inter-Area Oscillatory Stability Assessment of Power Systems Based on Random Bits Forest Considering Feature Redundancy," Energies, MDPI, vol. 14(6), pages 1-20, March.
    13. Jerzy Andruszkiewicz & Józef Lorenc & Agnieszka Weychan, 2023. "Determination of the Optimal Level of Reactive Power Compensation That Minimizes the Costs of Losses in Distribution Networks," Energies, MDPI, vol. 17(1), pages 1-24, December.
    14. Jinhua Zhang & Liding Zhu & Shengchao Zhao & Jie Yan & Lingling Lv, 2023. "Optimal Configuration of Energy Storage Systems in High PV Penetrating Distribution Network," Energies, MDPI, vol. 16(5), pages 1-21, February.
    15. Luis A. Gallego Pareja & Jesús M. López-Lezama & Oscar Gómez Carmona, 2022. "A Mixed-Integer Linear Programming Model for the Simultaneous Optimal Distribution Network Reconfiguration and Optimal Placement of Distributed Generation," Energies, MDPI, vol. 15(9), pages 1-26, April.
    16. Wiktor Wróblewski & Ryszard Kowalik & Marcin Januszewski & Karol Kurek, 2024. "A Fuzzy OLTC Controller: Applicability in the Transition Stage of the Energy System Transformation," Energies, MDPI, vol. 17(11), pages 1-16, June.
    17. Xiaosheng Peng & Kai Cheng & Jianxun Lang & Zuowei Zhang & Tao Cai & Shanxu Duan, 2021. "Short-Term Wind Power Prediction for Wind Farm Clusters Based on SFFS Feature Selection and BLSTM Deep Learning," Energies, MDPI, vol. 14(7), pages 1-18, March.
    18. Mostafa Elshahed & Mohamed A. Tolba & Ali M. El-Rifaie & Ahmed Ginidi & Abdullah Shaheen & Shazly A. Mohamed, 2023. "An Artificial Rabbits’ Optimization to Allocate PVSTATCOM for Ancillary Service Provision in Distribution Systems," Mathematics, MDPI, vol. 11(2), pages 1-19, January.
    19. Salah K. ElSayed & Ehab E. Elattar, 2021. "Slime Mold Algorithm for Optimal Reactive Power Dispatch Combining with Renewable Energy Sources," Sustainability, MDPI, vol. 13(11), pages 1-25, May.
    20. Hu, Yusha & Man, Yi, 2022. "Two-stage energy scheduling optimization model for complex industrial process and its industrial verification," Renewable Energy, Elsevier, vol. 193(C), pages 879-894.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7107-:d:669667. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.