IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i3p553-d204774.html
   My bibliography  Save this article

Power Loss Minimization and Voltage Stability Improvement in Electrical Distribution System via Network Reconfiguration and Distributed Generation Placement Using Novel Adaptive Shuffled Frogs Leaping Algorithm

Author

Listed:
  • Arun Onlam

    (Department of Electrical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand)

  • Daranpob Yodphet

    (Department of Electrical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand)

  • Rongrit Chatthaworn

    (Department of Electrical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand)

  • Chayada Surawanitkun

    (Faculty of Applied Science and Engineering, Khon Kaen University, Nong Khai Campus, Nong Khai 43000, Thailand)

  • Apirat Siritaratiwat

    (Department of Electrical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand)

  • Pirat Khunkitti

    (Department of Electrical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand)

Abstract

This paper proposes a novel adaptive optimization algorithm to solve the network reconfiguration and distributed generation (DG) placement problems with objective functions including power loss minimization and voltage stability index (VSI) improvement. The proposed technique called Adaptive Shuffled Frogs Leaping Algorithm (ASFLA) was performed for solving network reconfiguration and DG installation in IEEE 33- and 69-bus distribution systems with seven different scenarios. The performance of ASFLA was compared to that of other algorithms such as Fireworks Algorithm (FWA), Adaptive Cuckoo Search Algorithm (ACSA) and Shuffled Frogs Leaping Algorithm (SFLA). It was found that the power loss and VSI provided by ASFLA were better than those given by FWA, ACSA and SFLA in both 33- and 69-bus systems. The best solution of power loss reduction and VSI improvement of both 33- and 69-bus systems was achieved when the network reconfiguration with optimal sizing and the location DG were simultaneously implemented. From our analysis, it was indicated that the ASFLA could provide better solutions than other methods since the generating process, local and global searching of this algorithm were significantly improved from a conventional method. Hence, the ASFLA becomes another effective algorithm for solving network reconfiguration and DG placement problems in electrical distribution systems.

Suggested Citation

  • Arun Onlam & Daranpob Yodphet & Rongrit Chatthaworn & Chayada Surawanitkun & Apirat Siritaratiwat & Pirat Khunkitti, 2019. "Power Loss Minimization and Voltage Stability Improvement in Electrical Distribution System via Network Reconfiguration and Distributed Generation Placement Using Novel Adaptive Shuffled Frogs Leaping," Energies, MDPI, vol. 12(3), pages 1-12, February.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:3:p:553-:d:204774
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/3/553/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/3/553/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hung, Duong Quoc & Mithulananthan, N. & Bansal, R.C., 2014. "Integration of PV and BES units in commercial distribution systems considering energy loss and voltage stability," Applied Energy, Elsevier, vol. 113(C), pages 1162-1170.
    2. Prakash, Prem & Khatod, Dheeraj K., 2016. "Optimal sizing and siting techniques for distributed generation in distribution systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 111-130.
    3. Sultana, Beenish & Mustafa, M.W. & Sultana, U. & Bhatti, Abdul Rauf, 2016. "Review on reliability improvement and power loss reduction in distribution system via network reconfiguration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 297-310.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Supanat Chamchuen & Apirat Siritaratiwat & Pradit Fuangfoo & Puripong Suthisopapan & Pirat Khunkitti, 2021. "High-Accuracy Power Quality Disturbance Classification Using the Adaptive ABC-PSO as Optimal Feature Selection Algorithm," Energies, MDPI, vol. 14(5), pages 1-18, February.
    2. Oscar Danilo Montoya & Walter Gil-González & Andrés Arias-Londoño & Arul Rajagopalan & Jesus C. Hernández, 2020. "Voltage Stability Analysis in Medium-Voltage Distribution Networks Using a Second-Order Cone Approximation," Energies, MDPI, vol. 13(21), pages 1-15, November.
    3. Panyawoot Boonluk & Sirote Khunkitti & Pradit Fuangfoo & Apirat Siritaratiwat, 2021. "Optimal Siting and Sizing of Battery Energy Storage: Case Study Seventh Feeder at Nakhon Phanom Substation in Thailand," Energies, MDPI, vol. 14(5), pages 1-20, March.
    4. Nien-Che Yang & Yan-Lin Zeng & Tsai-Hsiang Chen, 2021. "Assessment of Voltage Imbalance Improvement and Power Loss Reduction in Residential Distribution Systems in Taiwan," Mathematics, MDPI, vol. 9(24), pages 1-17, December.
    5. Nasreddine Belbachir & Mohamed Zellagui & Samir Settoul & Claude Ziad El-Bayeh & Ragab A. El-Sehiemy, 2023. "Multi Dimension-Based Optimal Allocation of Uncertain Renewable Distributed Generation Outputs with Seasonal Source-Load Power Uncertainties in Electrical Distribution Network Using Marine Predator Al," Energies, MDPI, vol. 16(4), pages 1-24, February.
    6. Tianhao Song & Xiaoqing Han & Baifu Zhang, 2021. "Multi-Time-Scale Optimal Scheduling in Active Distribution Network with Voltage Stability Constraints," Energies, MDPI, vol. 14(21), pages 1-20, November.
    7. Luis A. Gallego Pareja & Jesús M. López-Lezama & Oscar Gómez Carmona, 2022. "A Mixed-Integer Linear Programming Model for the Simultaneous Optimal Distribution Network Reconfiguration and Optimal Placement of Distributed Generation," Energies, MDPI, vol. 15(9), pages 1-26, April.
    8. S. Angalaeswari & P. Sanjeevikumar & K. Jamuna & Zbigniew Leonowicz, 2020. "Hybrid PIPSO-SQP Algorithm for Real Power Loss Minimization in Radial Distribution Systems with Optimal Placement of Distributed Generation," Sustainability, MDPI, vol. 12(14), pages 1-21, July.
    9. Eshan Karunarathne & Jagadeesh Pasupuleti & Janaka Ekanayake & Dilini Almeida, 2020. "Optimal Placement and Sizing of DGs in Distribution Networks Using MLPSO Algorithm," Energies, MDPI, vol. 13(23), pages 1-25, November.
    10. Shanghua Guo & Jian Lin & Yuming Zhao & Longjun Wang & Gang Wang & Guowei Liu, 2020. "A Reliability-Based Network Reconfiguration Model in Distribution System with DGs and ESSs Using Mixed-Integer Programming," Energies, MDPI, vol. 13(5), pages 1-15, March.
    11. Qi Wang & Dasong Sun & Jianxiong Hu & Yi Wu & Ji Zhou & Yi Tang, 2019. "Risk Assessment Method for Integrated Transmission–Distribution System Considering the Reactive Power Regulation Capability of DGs," Energies, MDPI, vol. 12(16), pages 1-14, August.
    12. Habib Ur Rehman & Arif Hussain & Waseem Haider & Sayyed Ahmad Ali & Syed Ali Abbas Kazmi & Muhammad Huzaifa, 2023. "Optimal Planning of Solar Photovoltaic (PV) and Wind-Based DGs for Achieving Techno-Economic Objectives across Various Load Models," Energies, MDPI, vol. 16(5), pages 1-38, March.
    13. Ayşe Aybike Şeker & Tuba Gözel & Mehmet Hakan Hocaoğlu, 2021. "BIBC Matrix Modification for Network Topology Changes: Reconfiguration Problem Implementation," Energies, MDPI, vol. 14(10), pages 1-16, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahmoud M. Sayed & Mohamed Y. Mahdy & Shady H. E. Abdel Aleem & Hosam K. M. Youssef & Tarek A. Boghdady, 2022. "Simultaneous Distribution Network Reconfiguration and Optimal Allocation of Renewable-Based Distributed Generators and Shunt Capacitors under Uncertain Conditions," Energies, MDPI, vol. 15(6), pages 1-27, March.
    2. Sirjani, Reza & Rezaee Jordehi, Ahmad, 2017. "Optimal placement and sizing of distribution static compensator (D-STATCOM) in electric distribution networks: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 688-694.
    3. Prem Prakash & Duli Chand Meena & Hasmat Malik & Majed A. Alotaibi & Irfan Ahmad Khan, 2022. "A Novel Analytical Approach for Optimal Integration of Renewable Energy Sources in Distribution Systems," Energies, MDPI, vol. 15(4), pages 1-23, February.
    4. Li, Peng & Ji, Haoran & Yu, Hao & Zhao, Jinli & Wang, Chengshan & Song, Guanyu & Wu, Jianzhong, 2019. "Combined decentralized and local voltage control strategy of soft open points in active distribution networks," Applied Energy, Elsevier, vol. 241(C), pages 613-624.
    5. Hung, Duong Quoc & Mithulananthan, N. & Bansal, R.C., 2014. "An optimal investment planning framework for multiple distributed generation units in industrial distribution systems," Applied Energy, Elsevier, vol. 124(C), pages 62-72.
    6. Razavi, Seyed-Ehsan & Rahimi, Ehsan & Javadi, Mohammad Sadegh & Nezhad, Ali Esmaeel & Lotfi, Mohamed & Shafie-khah, Miadreza & Catalão, João P.S., 2019. "Impact of distributed generation on protection and voltage regulation of distribution systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 157-167.
    7. Sardi, Junainah & Mithulananthan, N. & Hung, Duong Quoc, 2017. "Strategic allocation of community energy storage in a residential system with rooftop PV units," Applied Energy, Elsevier, vol. 206(C), pages 159-171.
    8. Monteiro, Raul V.A. & Guimarães, Geraldo C. & Silva, Fernando Bento & da Silva Teixeira, Raoni F. & Carvalho, Bismarck C. & Finazzi, Antônio de P. & de Vasconcellos, Arnulfo B., 2018. "A medium-term analysis of the reduction in technical losses on distribution systems with variable demand using artificial neural networks: An Electrical Energy Storage approach," Energy, Elsevier, vol. 164(C), pages 1216-1228.
    9. Aouss Gabash & Pu Li, 2016. "On Variable Reverse Power Flow-Part II: An Electricity Market Model Considering Wind Station Size and Location," Energies, MDPI, vol. 9(4), pages 1-13, March.
    10. Tao Xu & He Meng & Jie Zhu & Wei Wei & He Zhao & Han Yang & Zijin Li & Yuhan Wu, 2021. "Optimal Capacity Allocation of Energy Storage in Distribution Networks Considering Active/Reactive Coordination," Energies, MDPI, vol. 14(6), pages 1-24, March.
    11. Wagner A. Vilela Junior & Antonio P. Coimbra & Gabriel A. Wainer & Joao Caetano Neto & Jose A. G. Cararo & Marcio R. C. Reis & Paulo V. Santos & Wesley P. Calixto, 2021. "Analysis and Adequacy Methodology for Voltage Violations in Distribution Power Grid," Energies, MDPI, vol. 14(14), pages 1-21, July.
    12. Wang, Chengshan & Song, Guanyu & Li, Peng & Ji, Haoran & Zhao, Jinli & Wu, Jianzhong, 2017. "Optimal siting and sizing of soft open points in active electrical distribution networks," Applied Energy, Elsevier, vol. 189(C), pages 301-309.
    13. Sultana, U. & Khairuddin, Azhar B. & Sultana, Beenish & Rasheed, Nadia & Qazi, Sajid Hussain & Malik, Nimra Riaz, 2018. "Placement and sizing of multiple distributed generation and battery swapping stations using grasshopper optimizer algorithm," Energy, Elsevier, vol. 165(PA), pages 408-421.
    14. Lyons, P.F. & Wade, N.S. & Jiang, T. & Taylor, P.C. & Hashiesh, F. & Michel, M. & Miller, D., 2015. "Design and analysis of electrical energy storage demonstration projects on UK distribution networks," Applied Energy, Elsevier, vol. 137(C), pages 677-691.
    15. Ji, Haoran & Wang, Chengshan & Li, Peng & Song, Guanyu & Yu, Hao & Wu, Jianzhong, 2019. "Quantified analysis method for operational flexibility of active distribution networks with high penetration of distributed generators," Applied Energy, Elsevier, vol. 239(C), pages 706-714.
    16. Xydas, Erotokritos & Marmaras, Charalampos & Cipcigan, Liana M., 2016. "A multi-agent based scheduling algorithm for adaptive electric vehicles charging," Applied Energy, Elsevier, vol. 177(C), pages 354-365.
    17. Larsen, Peter H. & Lawson, Megan & LaCommare, Kristina H. & Eto, Joseph H., 2020. "Severe weather, utility spending, and the long-term reliability of the U.S. power system," Energy, Elsevier, vol. 198(C).
    18. Ding, Tao & Lin, Yanling & Bie, Zhaohong & Chen, Chen, 2017. "A resilient microgrid formation strategy for load restoration considering master-slave distributed generators and topology reconfiguration," Applied Energy, Elsevier, vol. 199(C), pages 205-216.
    19. Gianpiero Colangelo & Gianluigi Spirto & Marco Milanese & Arturo de Risi, 2021. "Progresses in Analytical Design of Distribution Grids and Energy Storage," Energies, MDPI, vol. 14(14), pages 1-43, July.
    20. Ji, Haoran & Wang, Chengshan & Li, Peng & Zhao, Jinli & Song, Guanyu & Ding, Fei & Wu, Jianzhong, 2018. "A centralized-based method to determine the local voltage control strategies of distributed generator operation in active distribution networks," Applied Energy, Elsevier, vol. 228(C), pages 2024-2036.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:3:p:553-:d:204774. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.