IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i20p6717-d657588.html
   My bibliography  Save this article

Intelligent Room-Based Identification of Electricity Consumption with an Ensemble Learning Method in Smart Energy

Author

Listed:
  • Vincent Le

    (Department of Electrical and Computer Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA)

  • Joshua Ramirez

    (Department of Electrical and Computer Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA)

  • Miltiadis Alamaniotis

    (Department of Electrical and Computer Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA)

Abstract

This paper frames itself in the realm of smart energy technologies that can be utilized to satisfy the electricity demand of consumers. In this environment, demand response programs and the intelligent management of energy consumption that are offered by utility providers will play a significant role in implementing smart energy. One of the approaches to implementing smart energy is to analyze consumption data and provide targeted contracts to consumers based on their individual consumption characteristics. To that end, the identification of individual consumption features is important for suppliers and utilities. Given the complexity of smart home load profiles, an appliance-based identification is nearly impossible. In this paper, we propose a different approach by grouping appliances based on their rooms; thus, we provide a room-based identification of energy consumption. To this end, this paper presents and tests an intelligent consumption identification methodology, that can be implemented in the form of an ensemble of artificial intelligence tools. The ensemble, which comprises four convolutional neural networks (CNNs) and four k-nearest neighbor (KNN) algorithms, is fed with smart submeter data and outputs the identified type of room in a given dwelling. Results obtained from real-world data exhibit the superiority of the ensemble, with respect to accuracy, as compared with individual CNN and KNN models.

Suggested Citation

  • Vincent Le & Joshua Ramirez & Miltiadis Alamaniotis, 2021. "Intelligent Room-Based Identification of Electricity Consumption with an Ensemble Learning Method in Smart Energy," Energies, MDPI, vol. 14(20), pages 1-13, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6717-:d:657588
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/20/6717/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/20/6717/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Qian Wu & Fei Wang, 2019. "Concatenate Convolutional Neural Networks for Non-Intrusive Load Monitoring across Complex Background," Energies, MDPI, vol. 12(8), pages 1-17, April.
    2. Rafael Sánchez-Durán & Joaquín Luque & Julio Barbancho, 2019. "Long-Term Demand Forecasting in a Scenario of Energy Transition," Energies, MDPI, vol. 12(16), pages 1-23, August.
    3. Guo-Feng Fan & Yan-Hui Guo & Jia-Mei Zheng & Wei-Chiang Hong, 2019. "Application of the Weighted K-Nearest Neighbor Algorithm for Short-Term Load Forecasting," Energies, MDPI, vol. 12(5), pages 1-19, March.
    4. Nasir Ayub & Muhammad Irfan & Muhammad Awais & Usman Ali & Tariq Ali & Mohammed Hamdi & Abdullah Alghamdi & Fazal Muhammad, 2020. "Big Data Analytics for Short and Medium-Term Electricity Load Forecasting Using an AI Techniques Ensembler," Energies, MDPI, vol. 13(19), pages 1-21, October.
    5. Sol Kim & Sungwon Jung & Seung-Man Baek, 2019. "A Model for Predicting Energy Usage Pattern Types with Energy Consumption Information According to the Behaviors of Single-Person Households in South Korea," Sustainability, MDPI, vol. 11(1), pages 1-24, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Neilson Luniere Vilaça & Marly Guimarães Fernandes Costa & Cicero Ferreira Fernandes Costa Filho, 2023. "A Hybrid Deep Neural Network Architecture for Day-Ahead Electricity Forecasting: Post-COVID Paradigm," Energies, MDPI, vol. 16(8), pages 1-14, April.
    2. Cristina Puente & Rafael Palacios & Yolanda González-Arechavala & Eugenio Francisco Sánchez-Úbeda, 2020. "Non-Intrusive Load Monitoring (NILM) for Energy Disaggregation Using Soft Computing Techniques," Energies, MDPI, vol. 13(12), pages 1-20, June.
    3. Krzysztof Dowalla & Piotr Bilski & Robert Łukaszewski & Augustyn Wójcik & Ryszard Kowalik, 2022. "Application of the Time-Domain Signal Analysis for Electrical Appliances Identification in the Non-Intrusive Load Monitoring," Energies, MDPI, vol. 15(9), pages 1-20, May.
    4. Sholeh Hadi Pramono & Mahdin Rohmatillah & Eka Maulana & Rini Nur Hasanah & Fakhriy Hario, 2019. "Deep Learning-Based Short-Term Load Forecasting for Supporting Demand Response Program in Hybrid Energy System," Energies, MDPI, vol. 12(17), pages 1-16, August.
    5. Jacob Hale & Suzanna Long, 2020. "A Time Series Sustainability Assessment of a Partial Energy Portfolio Transition," Energies, MDPI, vol. 14(1), pages 1-14, December.
    6. Feng, Yanxiao & Duan, Qiuhua & Chen, Xi & Yakkali, Sai Santosh & Wang, Julian, 2021. "Space cooling energy usage prediction based on utility data for residential buildings using machine learning methods," Applied Energy, Elsevier, vol. 291(C).
    7. Ng, Rong Wang & Begam, Kasim Mumtaj & Rajkumar, Rajprasad Kumar & Wong, Yee Wan & Chong, Lee Wai, 2021. "An improved self-organizing incremental neural network model for short-term time-series load prediction," Applied Energy, Elsevier, vol. 292(C).
    8. Juan Carlos Bravo-Rodríguez & Francisco J. Torres & María D. Borrás, 2020. "Hybrid Machine Learning Models for Classifying Power Quality Disturbances: A Comparative Study," Energies, MDPI, vol. 13(11), pages 1-20, June.
    9. Everton Luiz de Aguiar & André Eugenio Lazzaretti & Bruna Machado Mulinari & Daniel Rodrigues Pipa, 2021. "Scattering Transform for Classification in Non-Intrusive Load Monitoring," Energies, MDPI, vol. 14(20), pages 1-20, October.
    10. Boni Sena & Sheikh Ahmad Zaki & Hom Bahadur Rijal & Jorge Alfredo Ardila-Rey & Nelidya Md Yusoff & Fitri Yakub & Farah Liana & Mohamad Zaki Hassan, 2021. "Development of an Electrical Energy Consumption Model for Malaysian Households, Based on Techno-Socioeconomic Determinant Factors," Sustainability, MDPI, vol. 13(23), pages 1-22, November.
    11. Haicheng Ling & Pierre-Yves Massé & Thibault Rihet & Frédéric Wurtz, 2023. "Realistic Nudging through ICT Pipelines to Help Improve Energy Self-Consumption for Management in Energy Communities," Energies, MDPI, vol. 16(13), pages 1-24, July.
    12. Hwan Kim & Sungsu Lim, 2021. "Temporal Patternization of Power Signatures for Appliance Classification in NILM," Energies, MDPI, vol. 14(10), pages 1-17, May.
    13. Sajawal ur Rehman Khan & Israa Adil Hayder & Muhammad Asif Habib & Mudassar Ahmad & Syed Muhammad Mohsin & Farrukh Aslam Khan & Kainat Mustafa, 2022. "Enhanced Machine-Learning Techniques for Medium-Term and Short-Term Electric-Load Forecasting in Smart Grids," Energies, MDPI, vol. 16(1), pages 1-16, December.
    14. Beatriz M. Paredes-Sánchez & José P. Paredes-Sánchez & Paulino J. García-Nieto, 2020. "Energy Multiphase Model for Biocoal Conversion Systems by Means of a Nodal Network," Energies, MDPI, vol. 13(11), pages 1-13, May.
    15. Shahzad Aslam & Nasir Ayub & Umer Farooq & Muhammad Junaid Alvi & Fahad R. Albogamy & Gul Rukh & Syed Irtaza Haider & Ahmad Taher Azar & Rasool Bukhsh, 2021. "Towards Electric Price and Load Forecasting Using CNN-Based Ensembler in Smart Grid," Sustainability, MDPI, vol. 13(22), pages 1-28, November.
    16. Amitay Kligman & Arbel Yaniv & Yuval Beck, 2023. "Energy Disaggregation of Type I and II Loads by Means of Birch Clustering and Watchdog Timers," Energies, MDPI, vol. 16(7), pages 1-21, March.
    17. Jonas Bielskus & Violeta Motuzienė & Tatjana Vilutienė & Audrius Indriulionis, 2020. "Occupancy Prediction Using Differential Evolution Online Sequential Extreme Learning Machine Model," Energies, MDPI, vol. 13(15), pages 1-20, August.
    18. Herodotos Herodotou, 2021. "Introduction to the Special Issue on Data-Intensive Computing in Smart Microgrids," Energies, MDPI, vol. 14(9), pages 1-3, May.
    19. Gibson Kimutai & Alexander Ngenzi & Rutabayiro Ngoga Said & Ambrose Kiprop & Anna Förster, 2020. "An Optimum Tea Fermentation Detection Model Based on Deep Convolutional Neural Networks," Data, MDPI, vol. 5(2), pages 1-26, April.
    20. Changzhi Li & Dandan Liu & Mao Wang & Hanlin Wang & Shuai Xu, 2023. "Detection of Outliers in Time Series Power Data Based on Prediction Errors," Energies, MDPI, vol. 16(2), pages 1-19, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6717-:d:657588. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.