Occupancy Prediction Using Differential Evolution Online Sequential Extreme Learning Machine Model
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Delzendeh, Elham & Wu, Song & Lee, Angela & Zhou, Ying, 2017. "The impact of occupants’ behaviours on building energy analysis: A research review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1061-1071.
- Jan Vanus & Ojan M. Gorjani & Petr Bilik, 2019. "Novel Proposal for Prediction of CO 2 Course and Occupancy Recognition in Intelligent Buildings within IoT," Energies, MDPI, vol. 12(23), pages 1-25, November.
- Mengda Jia & Ravi Srinivasan, 2020. "Building Performance Evaluation Using Coupled Simulation of EnergyPlus™ and an Occupant Behavior Model," Sustainability, MDPI, vol. 12(10), pages 1-13, May.
- Antonio Paone & Jean-Philippe Bacher, 2018. "The Impact of Building Occupant Behavior on Energy Efficiency and Methods to Influence It: A Review of the State of the Art," Energies, MDPI, vol. 11(4), pages 1-19, April.
- Wei, Yixuan & Xia, Liang & Pan, Song & Wu, Jinshun & Zhang, Xingxing & Han, Mengjie & Zhang, Weiya & Xie, Jingchao & Li, Qingping, 2019. "Prediction of occupancy level and energy consumption in office building using blind system identification and neural networks," Applied Energy, Elsevier, vol. 240(C), pages 276-294.
- Sol Kim & Sungwon Jung & Seung-Man Baek, 2019. "A Model for Predicting Energy Usage Pattern Types with Energy Consumption Information According to the Behaviors of Single-Person Households in South Korea," Sustainability, MDPI, vol. 11(1), pages 1-24, January.
- Kofi Afrifa Agyeman & Gyeonggak Kim & Hoonyeon Jo & Seunghyeon Park & Sekyung Han, 2020. "An Ensemble Stochastic Forecasting Framework for Variable Distributed Demand Loads," Energies, MDPI, vol. 13(10), pages 1-20, May.
- Xiufeng Liu & Yanyan Yang & Rongling Li & Per Sieverts Nielsen, 2019. "A Stochastic Model for Residential User Activity Simulation," Energies, MDPI, vol. 12(17), pages 1-17, August.
- Seunghui Lee & Sungwon Jung & Jaewook Lee, 2019. "Prediction Model Based on an Artificial Neural Network for User-Based Building Energy Consumption in South Korea," Energies, MDPI, vol. 12(4), pages 1-18, February.
- Zihao Li & Daniel Friedrich & Gareth P. Harrison, 2020. "Demand Forecasting for a Mixed-Use Building Using Agent-Schedule Information with a Data-Driven Model," Energies, MDPI, vol. 13(4), pages 1-20, February.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Panagiotis Korkidis & Anastasios Dounis & Panagiotis Kofinas, 2021. "Computational Intelligence Technologies for Occupancy Estimation and Comfort Control in Buildings," Energies, MDPI, vol. 14(16), pages 1-33, August.
- Rasa Džiugaitė-Tumėnienė & Rūta Mikučionienė & Giedrė Streckienė & Juozas Bielskus, 2021. "Development and Analysis of a Dynamic Energy Model of an Office Using a Building Management System (BMS) and Actual Measurement Data," Energies, MDPI, vol. 14(19), pages 1-24, October.
- Joanna Piotrowska-Woroniak & Krzysztof Cieśliński & Grzegorz Woroniak & Jonas Bielskus, 2022. "The Impact of Thermo-Modernization and Forecast Regulation on the Reduction of Thermal Energy Consumption and Reduction of Pollutant Emissions into the Atmosphere on the Example of Prefabricated Build," Energies, MDPI, vol. 15(8), pages 1-32, April.
- Yuan-Kang Wu & Cheng-Liang Huang & Quoc-Thang Phan & Yuan-Yao Li, 2022. "Completed Review of Various Solar Power Forecasting Techniques Considering Different Viewpoints," Energies, MDPI, vol. 15(9), pages 1-22, May.
- Amini Toosi, Hashem & Del Pero, Claudio & Leonforte, Fabrizio & Lavagna, Monica & Aste, Niccolò, 2023. "Machine learning for performance prediction in smart buildings: Photovoltaic self-consumption and life cycle cost optimization," Applied Energy, Elsevier, vol. 334(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhang, Wuxia & Wu, Yupeng & Calautit, John Kaiser, 2022. "A review on occupancy prediction through machine learning for enhancing energy efficiency, air quality and thermal comfort in the built environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
- Boni Sena & Sheikh Ahmad Zaki & Hom Bahadur Rijal & Jorge Alfredo Ardila-Rey & Nelidya Md Yusoff & Fitri Yakub & Farah Liana & Mohamad Zaki Hassan, 2021. "Development of an Electrical Energy Consumption Model for Malaysian Households, Based on Techno-Socioeconomic Determinant Factors," Sustainability, MDPI, vol. 13(23), pages 1-22, November.
- Seokho Kim & Yujin Song & Yoondong Sung & Donghyun Seo, 2019. "Development of a Consecutive Occupancy Estimation Framework for Improving the Energy Demand Prediction Performance of Building Energy Modeling Tools," Energies, MDPI, vol. 12(3), pages 1-21, January.
- Li, Xinyi & Yao, Runming, 2020. "A machine-learning-based approach to predict residential annual space heating and cooling loads considering occupant behaviour," Energy, Elsevier, vol. 212(C).
- Paulína Šujanová & Monika Rychtáriková & Tiago Sotto Mayor & Affan Hyder, 2019. "A Healthy, Energy-Efficient and Comfortable Indoor Environment, a Review," Energies, MDPI, vol. 12(8), pages 1-37, April.
- Joanna Piotrowska-Woroniak & Krzysztof Cieśliński & Grzegorz Woroniak & Jonas Bielskus, 2022. "The Impact of Thermo-Modernization and Forecast Regulation on the Reduction of Thermal Energy Consumption and Reduction of Pollutant Emissions into the Atmosphere on the Example of Prefabricated Build," Energies, MDPI, vol. 15(8), pages 1-32, April.
- Panagiotis Michailidis & Iakovos Michailidis & Dimitrios Vamvakas & Elias Kosmatopoulos, 2023. "Model-Free HVAC Control in Buildings: A Review," Energies, MDPI, vol. 16(20), pages 1-45, October.
- Juana Isabel Méndez & Adán Medina & Pedro Ponce & Therese Peffer & Alan Meier & Arturo Molina, 2022. "Evolving Gamified Smart Communities in Mexico to Save Energy in Communities through Intelligent Interfaces," Energies, MDPI, vol. 15(15), pages 1-29, July.
- Jakob Carlander & Bahram Moshfegh & Jan Akander & Fredrik Karlsson, 2020. "Effects on Energy Demand in an Office Building Considering Location, Orientation, Façade Design and Internal Heat Gains—A Parametric Study," Energies, MDPI, vol. 13(23), pages 1-22, November.
- Mansu Kim & Sungwon Jung & Joo-won Kang, 2019. "Artificial Neural Network-Based Residential Energy Consumption Prediction Models Considering Residential Building Information and User Features in South Korea," Sustainability, MDPI, vol. 12(1), pages 1-28, December.
- Shu Su & Xiaodong Li & Borong Lin & Hongyang Li & Jingfeng Yuan, 2019. "A Comparison of the Environmental Performance of Cooling and Heating among Different Household Types in China’s Hot Summer–Cold Winter Zone," Sustainability, MDPI, vol. 11(20), pages 1-17, October.
- Himeur, Yassine & Alsalemi, Abdullah & Bensaali, Faycal & Amira, Abbes, 2020. "Effective non-intrusive load monitoring of buildings based on a novel multi-descriptor fusion with dimensionality reduction," Applied Energy, Elsevier, vol. 279(C).
- Isabel Andrade & Johann Land & Patricio Gallardo & Susan Krumdieck, 2022. "Application of the InTIME Methodology for the Transition of Office Buildings to Low Carbon—A Case Study," Sustainability, MDPI, vol. 14(19), pages 1-17, September.
- Antonio Paone & Jean-Philippe Bacher, 2018. "The Impact of Building Occupant Behavior on Energy Efficiency and Methods to Influence It: A Review of the State of the Art," Energies, MDPI, vol. 11(4), pages 1-19, April.
- Anh Tuan Phan & Thi Tuyet Hong Vu & Dinh Quang Nguyen & Eleonora Riva Sanseverino & Hang Thi-Thuy Le & Van Cong Bui, 2022. "Data Compensation with Gaussian Processes Regression: Application in Smart Building’s Sensor Network," Energies, MDPI, vol. 15(23), pages 1-16, December.
- Magdalena Tutak & Jarosław Brodny, 2019. "Forecasting Methane Emissions from Hard Coal Mines Including the Methane Drainage Process," Energies, MDPI, vol. 12(20), pages 1-28, October.
- Martin Eriksson & Jan Akander & Bahram Moshfegh, 2022. "Investigating Energy Use in a City District in Nordic Climate Using Energy Signature," Energies, MDPI, vol. 15(5), pages 1-22, March.
- Hyemi Kim & Wonjun Park, 2018. "A Study of the Energy Efficiency Management in Green Standard for Energy and Environmental Design (G-SEED)-Certified Apartments in South Korea," Sustainability, MDPI, vol. 10(10), pages 1-20, September.
- Amasyali, Kadir & El-Gohary, Nora M., 2021. "Real data-driven occupant-behavior optimization for reduced energy consumption and improved comfort," Applied Energy, Elsevier, vol. 302(C).
- Filipe Soares & André Madureira & Andreu Pagès & António Barbosa & António Coelho & Fernando Cassola & Fernando Ribeiro & João Viana & José Andrade & Marina Dorokhova & Nélson Morais & Nicolas Wyrsch , 2021. "FEEdBACk: An ICT-Based Platform to Increase Energy Efficiency through Buildings’ Consumer Engagement," Energies, MDPI, vol. 14(6), pages 1-43, March.
More about this item
Keywords
open-space office; occupancy prediction; energy-performance gap; online sequential extreme learning machine; DE-OSELM method; differential evolution;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:15:p:4033-:d:394387. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.