IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i4p571-d96454.html
   My bibliography  Save this article

Research on the Common Rail Pressure Overshoot of Opposed-Piston Two-Stroke Diesel Engines

Author

Listed:
  • Yi Lu

    (School of Mechanical Engineering, Beijing Institute of Technology, Zhongguancun South Street No.5, Beijing 100081, China)

  • Changlu Zhao

    (School of Mechanical Engineering, Beijing Institute of Technology, Zhongguancun South Street No.5, Beijing 100081, China)

  • Zhe Zuo

    (School of Mechanical Engineering, Beijing Institute of Technology, Zhongguancun South Street No.5, Beijing 100081, China)

  • Fujun Zhang

    (School of Mechanical Engineering, Beijing Institute of Technology, Zhongguancun South Street No.5, Beijing 100081, China)

  • Shuanlu Zhang

    (School of Mechanical Engineering, Beijing Institute of Technology, Zhongguancun South Street No.5, Beijing 100081, China)

Abstract

The common rail pressure has a direct influence on the working stability of Opposed-Piston Two-Stroke (OP2S) diesel engines, especially on performance indexes such as power, economy and emissions. Meanwhile, the rail pressure overshoot phenomenon occurs frequently due to the operating characteristics of OP2S diesel engines, which could lead to serious consequences. In order to solve the rail pressure overshoot problem of OP2S diesel engines, a nonlinear concerted algorithm adding a speed state feedback was investigated. First, the nonlinear Linear Parameter Varying (LPV) model was utilized to describe the coupling relationship between the engine speed and the rail pressure. The Linear Quadratic Regulator (LQR) optimal control algorithm was applied to design the controller by the feedback of speed and rail pressure. Second, cooperating with the switching characteristics of injectors, the co-simulation of MATLAB/Simulink and GT-Power was utilized to verify the validity of the control algorithm and analyze workspaces for both normal and special sections. Finally, bench test results showed that the accuracy of the rail pressure control was in the range of ±1 MPa, in the condition of sudden 600 r/min speed increases. In addition, the fuel mass was reduced 76.3% compared with the maximum fuel supply quantity and the rail pressure fluctuation was less than 20 MPa. The algorithm could also be appropriate for other types of common rail system thanks to its universality.

Suggested Citation

  • Yi Lu & Changlu Zhao & Zhe Zuo & Fujun Zhang & Shuanlu Zhang, 2017. "Research on the Common Rail Pressure Overshoot of Opposed-Piston Two-Stroke Diesel Engines," Energies, MDPI, vol. 10(4), pages 1-23, April.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:4:p:571-:d:96454
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/4/571/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/4/571/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fukang Ma & Changlu Zhao & Fujun Zhang & Zhenfeng Zhao & Shuanlu Zhang, 2015. "Effects of Scavenging System Configuration on In-Cylinder Air Flow Organization of an Opposed-Piston Two-Stroke Engine," Energies, MDPI, vol. 8(6), pages 1-19, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lei Zhang & Tiexiong Su & Yangang Zhang & Fukang Ma & Jinguan Yin & Yaonan Feng, 2017. "Numerical Investigation of the Effects of Split Injection Strategies on Combustion and Emission in an Opposed-Piston, Opposed-Cylinder (OPOC) Two-Stroke Diesel Engine," Energies, MDPI, vol. 10(5), pages 1-17, May.
    2. Tianyou Pei & Feixue Chen & Shuheng Qiu & Dawei Wu & Weiwei Gao & Zhaoping Xu & Chi Zhang, 2022. "Research on the Intake Port of a Uniflow Scavenging GDI Opposed-Piston Two-Stroke Engine," Energies, MDPI, vol. 15(6), pages 1-15, March.
    3. Fukang Ma & Lei Zhang & Tiexiong Su, 2018. "Simulation Modeling and Optimization of Uniflow Scavenging System Parameters on Opposed-Piston Two-Stroke Engines," Energies, MDPI, vol. 11(4), pages 1-15, April.
    4. Jemni, Mohamed Ali & Kassem, Sahar Hadj & Driss, Zied & Abid, Mohamed Salah, 2018. "Effects of hydrogen enrichment and injection location on in-cylinder flow characteristics, performance and emissions of gaseous LPG engine," Energy, Elsevier, vol. 150(C), pages 92-108.
    5. Alex G. Young & Aaron W. Costall & Daniel Coren & James W. G. Turner, 2021. "The Effect of Crankshaft Phasing and Port Timing Asymmetry on Opposed-Piston Engine Thermal Efficiency," Energies, MDPI, vol. 14(20), pages 1-20, October.
    6. Fu-Kang Ma & Jun Wang & Yao-Nan Feng & Yan-Gang Zhang & Tie-Xiong Su & Yi Zhang & Yu-Hang Liu, 2017. "Parameter Optimization on the Uniflow Scavenging System of an OP2S-GDI Engine Based on Indicated Mean Effective Pressure (IMEP)," Energies, MDPI, vol. 10(3), pages 1-20, March.
    7. Paul Stewart & Chris Bingham, 2016. "Electrical Power and Energy Systems for Transportation Applications," Energies, MDPI, vol. 9(7), pages 1-3, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:4:p:571-:d:96454. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.