IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i24p16559-d999297.html
   My bibliography  Save this article

Prediction of Pork Supply Based on Improved Mayfly Optimization Algorithm and BP Neural Network

Author

Listed:
  • Ji-Quan Wang

    (College of Engineering, Northeast Agricultural University, Harbin 150030, China)

  • Hong-Yu Zhang

    (College of Engineering, Northeast Agricultural University, Harbin 150030, China)

  • Hao-Hao Song

    (College of Engineering, Northeast Agricultural University, Harbin 150030, China)

  • Pan-Li Zhang

    (College of Engineering, Northeast Agricultural University, Harbin 150030, China)

  • Jin-Ling Bei

    (College of Engineering, Northeast Agricultural University, Harbin 150030, China)

Abstract

Focusing on the issues of slow convergence speed and the ease of falling into a local optimum when optimizing the weights and thresholds of a back-propagation artificial neural network (BPANN) by the gradient method, a prediction method for pork supply based on an improved mayfly optimization algorithm (MOA) and BPANN is proposed. Firstly, in order to improve the performance of MOA, an improved mayfly optimization algorithm with an adaptive visibility coefficient (AVC-IMOA) is introduced. Secondly, AVC-IMOA is used to optimize the weights and thresholds of a BPANN (AVC-IMOA_BP). Thirdly, the trained BPANN and the statistical data are adopted to predict the pork supply in Heilongjiang Province from 2000 to 2020. Finally, to demonstrate the effectiveness of the proposed method for predicting pork supply, the pork supply in Heilongjiang Province was predicted by using AVC-IMOA_BP, a BPANN based on the gradient descent method and a BPANN based on a mixed-strategy whale optimization algorithm (MSWOA_BP), a BPANN based on an artificial bee colony algorithm (ABC_BP) and a BPANN based on a firefly algorithm and sparrow search algorithm (FASSA_BP) in the literature. The results show that the prediction accuracy of the proposed method based on AVC-IMOA and a BPANN is obviously better than those of MSWOA_BP, ABC_BP and FASSA_BP, thus verifying the superior performance of AVC-IMOA_BP.

Suggested Citation

  • Ji-Quan Wang & Hong-Yu Zhang & Hao-Hao Song & Pan-Li Zhang & Jin-Ling Bei, 2022. "Prediction of Pork Supply Based on Improved Mayfly Optimization Algorithm and BP Neural Network," Sustainability, MDPI, vol. 14(24), pages 1-21, December.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:24:p:16559-:d:999297
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/24/16559/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/24/16559/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wei Han & Lingbo Nan & Min Su & Yu Chen & Rennian Li & Xuejing Zhang, 2019. "Research on the Prediction Method of Centrifugal Pump Performance Based on a Double Hidden Layer BP Neural Network," Energies, MDPI, vol. 12(14), pages 1-14, July.
    2. Li Shi & Xuehong Ding & Min Li & Yuan Liu & Muhammad Ahmad, 2021. "Research on the Capability Maturity Evaluation of Intelligent Manufacturing Based on Firefly Algorithm, Sparrow Search Algorithm, and BP Neural Network," Complexity, Hindawi, vol. 2021, pages 1-26, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jia Li & Xin Wang & Yue Wang & Wancheng Wang & Baibing Chen & Xiaolong Chen, 2020. "Effects of a Combination Impeller on the Flow Field and External Performance of an Aero-Fuel Centrifugal Pump," Energies, MDPI, vol. 13(4), pages 1-16, February.
    2. Grzegorz Filo, 2023. "Artificial Intelligence Methods in Hydraulic System Design," Energies, MDPI, vol. 16(8), pages 1-19, April.
    3. Rui Liu & Yuanbin Mo & Yanyue Lu & Yucheng Lyu & Yuedong Zhang & Haidong Guo, 2022. "Swarm-Intelligence Optimization Method for Dynamic Optimization Problem," Mathematics, MDPI, vol. 10(11), pages 1-28, May.
    4. Min Yi & Wei Xie & Li Mo, 2021. "Short-Term Electricity Price Forecasting Based on BP Neural Network Optimized by SAPSO," Energies, MDPI, vol. 14(20), pages 1-17, October.
    5. Huican Luo & Peijian Zhou & Lingfeng Shu & Jiegang Mou & Haisheng Zheng & Chenglong Jiang & Yantian Wang, 2022. "Energy Performance Curves Prediction of Centrifugal Pumps Based on Constrained PSO-SVR Model," Energies, MDPI, vol. 15(9), pages 1-19, May.
    6. Xiongchao Lin & Wenshuai Xi & Jinze Dai & Caihong Wang & Yonggang Wang, 2020. "Prediction of Slag Characteristics Based on Artificial Neural Network for Molten Gasification of Hazardous Wastes," Energies, MDPI, vol. 13(19), pages 1-18, October.
    7. Zhang, Yiming & Li, Jingxiang & Fei, Liangyu & Feng, Zhiyan & Gao, Jingzhou & Yan, Wenpeng & Zhao, Shengdun, 2023. "Operational performance estimation of vehicle electric coolant pump based on the ISSA-BP neural network," Energy, Elsevier, vol. 268(C).
    8. Xiaomin Xu & Luyao Peng & Zhengsen Ji & Shipeng Zheng & Zhuxiao Tian & Shiping Geng, 2021. "Research on Substation Project Cost Prediction Based on Sparrow Search Algorithm Optimized BP Neural Network," Sustainability, MDPI, vol. 13(24), pages 1-17, December.
    9. Lixin Wei & Yu Zhang & Lili Ji & Lin Ye & Xuanchen Zhu & Jin Fu, 2022. "Pressure Drop Prediction of Crude Oil Pipeline Based on PSO-BP Neural Network," Energies, MDPI, vol. 15(16), pages 1-12, August.
    10. Eslam Mohammed Abdelkader & Nehal Elshaboury & Abobakr Al-Sakkaf, 2022. "On the Utilization of an Ensemble of Meta-Heuristics for Simulating Energy Consumption in Buildings," International Journal of Applied Metaheuristic Computing (IJAMC), IGI Global, vol. 13(1), pages 1-31, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:24:p:16559-:d:999297. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.