IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i11p2980-d559257.html
   My bibliography  Save this article

An Improved Particle Swarm Optimization with Chaotic Inertia Weight and Acceleration Coefficients for Optimal Extraction of PV Models Parameters

Author

Listed:
  • Arooj Tariq Kiani

    (Department of Electrical Engineering, University of Engineering and Technology Taxila, Taxila 47080, Pakistan)

  • Muhammad Faisal Nadeem

    (Department of Electrical Engineering, University of Engineering and Technology Taxila, Taxila 47080, Pakistan
    Clean and Resilient Energy Systems (CARES) Research Laboratory, Texas A&M University, Galveston, TX 77553, USA)

  • Ali Ahmed

    (Department of Electrical Engineering, University of Engineering and Technology Taxila, Taxila 47080, Pakistan)

  • Irfan A. Khan

    (Clean and Resilient Energy Systems (CARES) Research Laboratory, Texas A&M University, Galveston, TX 77553, USA)

  • Hend I. Alkhammash

    (Department of Electrical Engineering, College of Engineering, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia)

  • Intisar Ali Sajjad

    (Department of Electrical Engineering, University of Engineering and Technology Taxila, Taxila 47080, Pakistan)

  • Babar Hussain

    (Department of Electrical Engineering, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 44000, Pakistan)

Abstract

The efficiency of PV systems can be improved by accurate estimation of PV parameters. Parameter estimation of PV cells and modules is a challenging task as it requires accurate operation of PV cells and modules followed by an optimization tool that estimates their associated parameters. Mostly, population-based optimization tools are utilized for PV parameter estimation problems due to their computational intelligent behavior. However, most of them suffer from premature convergence problems, high computational burden, and often fall into local optimum solution. To mitigate these limitations, this paper presents an improved variant of particle swarm optimization (PSO) aiming to reduce shortcomings offered by conventional PSO for estimation of PV parameters. PSO is improved by introducing two strategies to control inertia weight and acceleration coefficients. At first, a sine chaotic inertia weight strategy is employed to attain an appropriate balance between local and global search. Afterward, a tangent chaotic strategy is utilized to guide acceleration coefficients in search of an optimal solution. The proposed algorithm is utilized to estimate the parameters of the PWP201 PV module, RTC France solar cell, and a JKM330P-72 PV module-based practical system. The obtained results indicate that the proposed technique avoids premature convergence and local optima stagnation of conventional PSO. Moreover, a comparison of obtained results with techniques available in the literature proves that the proposed methodology is an efficient, effective, and optimal tool to estimate PV modules and cells’ parameters.

Suggested Citation

  • Arooj Tariq Kiani & Muhammad Faisal Nadeem & Ali Ahmed & Irfan A. Khan & Hend I. Alkhammash & Intisar Ali Sajjad & Babar Hussain, 2021. "An Improved Particle Swarm Optimization with Chaotic Inertia Weight and Acceleration Coefficients for Optimal Extraction of PV Models Parameters," Energies, MDPI, vol. 14(11), pages 1-24, May.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:2980-:d:559257
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/11/2980/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/11/2980/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Xu & Xu, Bin & Mei, Congli & Ding, Yuhan & Li, Kangji, 2018. "Teaching–learning–based artificial bee colony for solar photovoltaic parameter estimation," Applied Energy, Elsevier, vol. 212(C), pages 1578-1588.
    2. Das, Barun K. & Hasan, Mahmudul, 2021. "Optimal sizing of a stand-alone hybrid system for electric and thermal loads using excess energy and waste heat," Energy, Elsevier, vol. 214(C).
    3. Ishaque, Kashif & Salam, Zainal & Mekhilef, Saad & Shamsudin, Amir, 2012. "Parameter extraction of solar photovoltaic modules using penalty-based differential evolution," Applied Energy, Elsevier, vol. 99(C), pages 297-308.
    4. Fathy, Ahmed & Elaziz, Mohamed Abd & Sayed, Enas Taha & Olabi, A.G. & Rezk, Hegazy, 2019. "Optimal parameter identification of triple-junction photovoltaic panel based on enhanced moth search algorithm," Energy, Elsevier, vol. 188(C).
    5. Oliva, Diego & Cuevas, Erik & Pajares, Gonzalo, 2014. "Parameter identification of solar cells using artificial bee colony optimization," Energy, Elsevier, vol. 72(C), pages 93-102.
    6. Yingjie Song & Daqing Wu & Ali Wagdy Mohamed & Xiangbing Zhou & Bin Zhang & Wu Deng & Ahmed Mostafa Khalil, 2021. "Enhanced Success History Adaptive DE for Parameter Optimization of Photovoltaic Models," Complexity, Hindawi, vol. 2021, pages 1-22, January.
    7. Nunes, H.G.G. & Pombo, J.A.N. & Mariano, S.J.P.S. & Calado, M.R.A. & Felippe de Souza, J.A.M., 2018. "A new high performance method for determining the parameters of PV cells and modules based on guaranteed convergence particle swarm optimization," Applied Energy, Elsevier, vol. 211(C), pages 774-791.
    8. Jordehi, A. Rezaee, 2016. "Parameter estimation of solar photovoltaic (PV) cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 354-371.
    9. Wahyudi Sutopo & Ika Shinta Mardikaningsih & Roni Zakaria & Ahad Ali, 2020. "A Model to Improve the Implementation Standards of Street Lighting Based on Solar Energy: A Case Study," Energies, MDPI, vol. 13(3), pages 1-20, February.
    10. Bai Xue & Fang Li & Meiping Song & Xiaodi Shang & Dongqing Cui & Jiaping Chu & Sui Dai, 2021. "Crack Extraction for Polycrystalline Solar Panels," Energies, MDPI, vol. 14(2), pages 1-18, January.
    11. Tong Kang & Jiangang Yao & Min Jin & Shengjie Yang & ThanhLong Duong, 2018. "A Novel Improved Cuckoo Search Algorithm for Parameter Estimation of Photovoltaic (PV) Models," Energies, MDPI, vol. 11(5), pages 1-31, April.
    12. Javier Cubas & Santiago Pindado & Carlos De Manuel, 2014. "Explicit Expressions for Solar Panel Equivalent Circuit Parameters Based on Analytical Formulation and the Lambert W-Function," Energies, MDPI, vol. 7(7), pages 1-18, June.
    13. Hassan M. H. Farh & Mohd F. Othman & Ali M. Eltamaly & M. S. Al-Saud, 2018. "Maximum Power Extraction from a Partially Shaded PV System Using an Interleaved Boost Converter," Energies, MDPI, vol. 11(10), pages 1-18, September.
    14. Muhammad Ali Mughal & Qishuang Ma & Chunyan Xiao, 2017. "Photovoltaic Cell Parameter Estimation Using Hybrid Particle Swarm Optimization and Simulated Annealing," Energies, MDPI, vol. 10(8), pages 1-14, August.
    15. Chen, Xu & Yu, Kunjie & Du, Wenli & Zhao, Wenxiang & Liu, Guohai, 2016. "Parameters identification of solar cell models using generalized oppositional teaching learning based optimization," Energy, Elsevier, vol. 99(C), pages 170-180.
    16. Jieming Ma & T. O. Ting & Ka Lok Man & Nan Zhang & Sheng-Uei Guan & Prudence W. H. Wong, 2013. "Parameter Estimation of Photovoltaic Models via Cuckoo Search," Journal of Applied Mathematics, Hindawi, vol. 2013, pages 1-8, August.
    17. Manoel Henriques de Sá Campos & Chigueru Tiba, 2021. "npTrack: A n-Position Single Axis Solar Tracker Model for Optimized Energy Collection," Energies, MDPI, vol. 14(4), pages 1-13, February.
    18. Hossein Moayedi & Amir Mosavi, 2021. "An Innovative Metaheuristic Strategy for Solar Energy Management through a Neural Networks Framework," Energies, MDPI, vol. 14(4), pages 1-18, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Min Yi & Wei Xie & Li Mo, 2021. "Short-Term Electricity Price Forecasting Based on BP Neural Network Optimized by SAPSO," Energies, MDPI, vol. 14(20), pages 1-17, October.
    2. Zaiyu Gu & Guojiang Xiong & Xiaofan Fu, 2023. "Parameter Extraction of Solar Photovoltaic Cell and Module Models with Metaheuristic Algorithms: A Review," Sustainability, MDPI, vol. 15(4), pages 1-45, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Shuijia & Gong, Wenyin & Gu, Qiong, 2021. "A comprehensive survey on meta-heuristic algorithms for parameter extraction of photovoltaic models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    2. Arooj Tariq Kiani & Muhammad Faisal Nadeem & Ali Ahmed & Irfan Khan & Rajvikram Madurai Elavarasan & Narottam Das, 2020. "Optimal PV Parameter Estimation via Double Exponential Function-Based Dynamic Inertia Weight Particle Swarm Optimization," Energies, MDPI, vol. 13(15), pages 1-26, August.
    3. Yu, Kunjie & Liang, J.J. & Qu, B.Y. & Cheng, Zhiping & Wang, Heshan, 2018. "Multiple learning backtracking search algorithm for estimating parameters of photovoltaic models," Applied Energy, Elsevier, vol. 226(C), pages 408-422.
    4. Fan, Yi & Wang, Pengjun & Heidari, Ali Asghar & Chen, Huiling & HamzaTurabieh, & Mafarja, Majdi, 2022. "Random reselection particle swarm optimization for optimal design of solar photovoltaic modules," Energy, Elsevier, vol. 239(PA).
    5. Chin, Vun Jack & Salam, Zainal, 2019. "A New Three-point-based Approach for the Parameter Extraction of Photovoltaic Cells," Applied Energy, Elsevier, vol. 237(C), pages 519-533.
    6. Martin Ćalasan & Dražen Jovanović & Vesna Rubežić & Saša Mujović & Slobodan Đukanović, 2019. "Estimation of Single-Diode and Two-Diode Solar Cell Parameters by Using a Chaotic Optimization Approach," Energies, MDPI, vol. 12(21), pages 1-14, November.
    7. Wu, Lijun & Chen, Zhicong & Long, Chao & Cheng, Shuying & Lin, Peijie & Chen, Yixiang & Chen, Huihuang, 2018. "Parameter extraction of photovoltaic models from measured I-V characteristics curves using a hybrid trust-region reflective algorithm," Applied Energy, Elsevier, vol. 232(C), pages 36-53.
    8. Qais, Mohammed H. & Hasanien, Hany M. & Alghuwainem, Saad, 2020. "Parameters extraction of three-diode photovoltaic model using computation and Harris Hawks optimization," Energy, Elsevier, vol. 195(C).
    9. Samuel R. Fahim & Hany M. Hasanien & Rania A. Turky & Shady H. E. Abdel Aleem & Martin Ćalasan, 2022. "A Comprehensive Review of Photovoltaic Modules Models and Algorithms Used in Parameter Extraction," Energies, MDPI, vol. 15(23), pages 1-56, November.
    10. Mehmet Yesilbudak, 2021. "Parameter Extraction of Photovoltaic Cells and Modules Using Grey Wolf Optimizer with Dimension Learning-Based Hunting Search Strategy," Energies, MDPI, vol. 14(18), pages 1-27, September.
    11. Tong Kang & Jiangang Yao & Min Jin & Shengjie Yang & ThanhLong Duong, 2018. "A Novel Improved Cuckoo Search Algorithm for Parameter Estimation of Photovoltaic (PV) Models," Energies, MDPI, vol. 11(5), pages 1-31, April.
    12. Chen, Zhicong & Wu, Lijun & Lin, Peijie & Wu, Yue & Cheng, Shuying, 2016. "Parameters identification of photovoltaic models using hybrid adaptive Nelder-Mead simplex algorithm based on eagle strategy," Applied Energy, Elsevier, vol. 182(C), pages 47-57.
    13. Zhou, Junfeng & Zhang, Yanhui & Zhang, Yubo & Shang, Wen-Long & Yang, Zhile & Feng, Wei, 2022. "Parameters identification of photovoltaic models using a differential evolution algorithm based on elite and obsolete dynamic learning," Applied Energy, Elsevier, vol. 314(C).
    14. Pillai, Dhanup S. & Rajasekar, N., 2018. "Metaheuristic algorithms for PV parameter identification: A comprehensive review with an application to threshold setting for fault detection in PV systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3503-3525.
    15. Słowik, Adam & Cpałka, Krzysztof & Xue, Yu & Hapka, Aneta, 2024. "An efficient approach to parameter extraction of photovoltaic cell models using a new population-based algorithm," Applied Energy, Elsevier, vol. 364(C).
    16. Choulli, Imade & Elyaqouti, Mustapha & Arjdal, El hanafi & Ben hmamou, Dris & Saadaoui, Driss & Lidaighbi, Souad & Elhammoudy, Abdelfattah & Abazine, Ismail, 2023. "Hybrid optimization based on the analytical approach and the particle swarm optimization algorithm (Ana-PSO) for the extraction of single and double diode models parameters," Energy, Elsevier, vol. 283(C).
    17. Liu, Yun & Heidari, Ali Asghar & Ye, Xiaojia & Liang, Guoxi & Chen, Huiling & He, Caitou, 2021. "Boosting slime mould algorithm for parameter identification of photovoltaic models," Energy, Elsevier, vol. 234(C).
    18. Zaiyu Gu & Guojiang Xiong & Xiaofan Fu, 2023. "Parameter Extraction of Solar Photovoltaic Cell and Module Models with Metaheuristic Algorithms: A Review," Sustainability, MDPI, vol. 15(4), pages 1-45, February.
    19. Yousri, Dalia & Thanikanti, Sudhakar Babu & Allam, Dalia & Ramachandaramurthy, Vigna K. & Eteiba, M.B., 2020. "Fractional chaotic ensemble particle swarm optimizer for identifying the single, double, and three diode photovoltaic models’ parameters," Energy, Elsevier, vol. 195(C).
    20. Adeel, Muhammad & Hassan, Ahmad Kamal & Sher, Hadeed Ahmed & Murtaza, Ali Faisal, 2021. "A grade point average assessment of analytical and numerical methods for parameter extraction of a practical PV device," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:2980-:d:559257. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.