IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i20p5491-d431796.html
   My bibliography  Save this article

Faulty Synchronization of Salient Pole Synchronous Hydro Generator

Author

Listed:
  • Adam Gozdowiak

    (Faculty of Electrical Engineering, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland)

Abstract

This article presents the simulation results of hydro generator faulty synchronization during connection to the grid for various voltage phase shift changes in a full range (−180°; 180°). A field-circuit model of salient pole synchronous hydro generator was used to perform the calculation results. It was verified using the measured no-load and three-phase short-circuit characteristics. This model allowed observing the physical phenomena existing in the investigated machine, especially in the rotor which was hardly accessible for measurement. The presented analysis shows the influence of faulty synchronization on the power system stability and the construction components which are the most vulnerable to damage. From a mechanical point of view, the most dangerous case was for the voltage phase shift equal to −120°, and this case was analyzed in detail. Great emphasis was placed on the following physical quantities: electromagnetic torque, stator current, stator voltage, rotor current, current in rotor bars, and active and reactive power. The physical quantities existing during faulty synchronization were compared with a three-phase sudden short-circuit state. From this comparison, we selected the values of physical quantities that should be taken into account during design of new hydro generators to withstand the greatest possible threats during long-term work.

Suggested Citation

  • Adam Gozdowiak, 2020. "Faulty Synchronization of Salient Pole Synchronous Hydro Generator," Energies, MDPI, vol. 13(20), pages 1-21, October.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:20:p:5491-:d:431796
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/20/5491/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/20/5491/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rodolfo V. Rocha & Renato M. Monaro, 2023. "Algorithm for Fast Detection of Stator Turn Faultsin Variable-Speed Synchronous Generators," Energies, MDPI, vol. 16(5), pages 1-23, March.
    2. Józef Borkowski & Mirosław Szmajda & Janusz Mroczka, 2021. "The Influence of Power Network Disturbances on Short Delayed Estimation of Fundamental Frequency Based on IpDFT Method with GMSD Windows," Energies, MDPI, vol. 14(20), pages 1-26, October.
    3. Xiaoshuai Bi & Likun Wang & Fabrizio Marignetti & Minghao Zhou, 2021. "Research on Electromagnetic Field, Eddy Current Loss and Heat Transfer in the End Region of Synchronous Condenser with Different End Structures and Material Properties," Energies, MDPI, vol. 14(15), pages 1-15, July.
    4. Fang Dao & Yun Zeng & Yidong Zou & Xiang Li & Jing Qian, 2021. "Acoustic Vibration Approach for Detecting Faults in Hydroelectric Units: A Review," Energies, MDPI, vol. 14(23), pages 1-16, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:20:p:5491-:d:431796. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.