IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i19p6322-d649424.html
   My bibliography  Save this article

Examining Thermal Management Strategies for a Microcombustion Power Device

Author

Listed:
  • Bhanuprakash Reddy Guggilla

    (Mechanical Engineering Department, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ 08028, USA)

  • Jack Perelman Camins

    (Mechanical Engineering Department, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ 08028, USA)

  • Benjamin Taylor

    (Mechanical Engineering Department, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ 08028, USA)

  • Smitesh Bakrania

    (Mechanical Engineering Department, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ 08028, USA)

Abstract

Microcombustion attracts interest with its promise of energy dense power generation for electronics. Yet, challenges remain to develop this technology further. Thermal management of heat losses is a known hurdle. Simultaneously, non-uniformities in heat release within the reaction regions also affect the device performance. Therefore a combination of thermal management strategies are necessary for further performance enhancements. Here, a bench top platinum nanoparticle based microcombustion reactor, coupled with thermoelectric generators is used. Methanol-air mixtures achieve room temperature ignition within a catalytic cartridge. In the current study, the reactor design is modified to incorporate two traditional thermal management strategies. By limiting enthalpic losses through the exhaust and reactor sides, using multi-pass preheating channels and heat recirculation, expected improvements are achieved. The combined strategies doubled the power output to 1.01 W when compared to the previous design. Furthermore, a preliminary study of catalyst distribution is presented to mitigate non-uniform catalytic activity within the substrate. To do this, tailored distribution of catalyst particles was investigated. This investigation shows a proof-of-concept to achieve localized control, thus management, over heat generation within substrates. By optimizing heat generation, a highly refined combustion-based portable power devices can be envisioned.

Suggested Citation

  • Bhanuprakash Reddy Guggilla & Jack Perelman Camins & Benjamin Taylor & Smitesh Bakrania, 2021. "Examining Thermal Management Strategies for a Microcombustion Power Device," Energies, MDPI, vol. 14(19), pages 1-14, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6322-:d:649424
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/19/6322/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/19/6322/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Merotto, L. & Fanciulli, C. & Dondè, R. & De Iuliis, S., 2016. "Study of a thermoelectric generator based on a catalytic premixed meso-scale combustor," Applied Energy, Elsevier, vol. 162(C), pages 346-353.
    2. Aravind, B. & Khandelwal, Bhupendra & Ramakrishna, P.A. & Kumar, Sudarshan, 2020. "Towards the development of a high power density, high efficiency, micro power generator," Applied Energy, Elsevier, vol. 261(C).
    3. Tolmachoff, Erik D. & Allmon, William & Waits, C. Mike, 2014. "Analysis of a high throughput n-dodecane fueled heterogeneous/homogeneous parallel plate microreactor for portable power conversion," Applied Energy, Elsevier, vol. 128(C), pages 111-118.
    4. Guggilla, Bhanuprakash Reddy & Rusted, Alexander & Bakrania, Smitesh, 2019. "Platinum nanoparticle catalysis of methanol for thermoelectric power generation," Applied Energy, Elsevier, vol. 237(C), pages 155-162.
    5. Vijayan, V. & Gupta, A.K., 2010. "Combustion and heat transfer at meso-scale with thermal recuperation," Applied Energy, Elsevier, vol. 87(8), pages 2628-2639, August.
    6. Shirsat, V. & Gupta, A.K., 2011. "A review of progress in heat recirculating meso-scale combustors," Applied Energy, Elsevier, vol. 88(12), pages 4294-4309.
    7. Fanciulli, C. & Abedi, H. & Merotto, L. & Dondè, R. & De Iuliis, S. & Passaretti, F., 2018. "Portable thermoelectric power generation based on catalytic combustor for low power electronic equipment," Applied Energy, Elsevier, vol. 215(C), pages 300-308.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aravind, B. & Khandelwal, Bhupendra & Ramakrishna, P.A. & Kumar, Sudarshan, 2020. "Towards the development of a high power density, high efficiency, micro power generator," Applied Energy, Elsevier, vol. 261(C).
    2. Fanciulli, C. & Abedi, H. & Merotto, L. & Dondè, R. & De Iuliis, S. & Passaretti, F., 2018. "Portable thermoelectric power generation based on catalytic combustor for low power electronic equipment," Applied Energy, Elsevier, vol. 215(C), pages 300-308.
    3. Liu, Zeqi & Liu, Wanhao & Du, Yiqing & Fan, Aiwu, 2024. "Experimental study on the propagation characteristics of non-premixed H2/air flames in a curved micro-combustor," Energy, Elsevier, vol. 299(C).
    4. E, Jiaqiang & Luo, Bo & Han, Dandan & Chen, Jingwei & Liao, Gaoliang & Zhang, Feng & Ding, Jiangjun, 2022. "A comprehensive review on performance improvement of micro energy mechanical system: Heat transfer, micro combustion and energy conversion," Energy, Elsevier, vol. 239(PE).
    5. Zhu, Xingzhuang & Zuo, Zhengxing & Wang, Wei & Jia, Boru & Zhan, Tianzhuo, 2023. "Experimental research and optimization of a thermoelectric generator excited by pulsed combustion mode under limited heat dissipation for combined heat and power supply," Applied Energy, Elsevier, vol. 349(C).
    6. Guggilla, Bhanuprakash Reddy & Rusted, Alexander & Bakrania, Smitesh, 2019. "Platinum nanoparticle catalysis of methanol for thermoelectric power generation," Applied Energy, Elsevier, vol. 237(C), pages 155-162.
    7. Li, Guoneng & Zheng, Youqu & Guo, Wenwen & Zhu, Dongya & Tang, Yuanjun, 2020. "Mesoscale combustor-powered thermoelectric generator: Experimental optimization and evaluation metrics," Applied Energy, Elsevier, vol. 272(C).
    8. Aravind, B. & Khandelwal, Bhupendra & Kumar, Sudarshan, 2018. "Experimental investigations on a new high intensity dual microcombustor based thermoelectric micropower generator," Applied Energy, Elsevier, vol. 228(C), pages 1173-1181.
    9. Li, Guoneng & Zhu, Zhihao & Zheng, Youqu & Guo, Wenwen & Tang, Yuanjun & Ye, Chao, 2023. "Experiments on a powerful, ultra-clean, and low-noise-level swirl-combustion-powered micro thermoelectric generator," Energy, Elsevier, vol. 263(PB).
    10. Junjie Chen & Longfei Yan & Wenya Song & Deguang Xu, 2018. "Catalytic Oxidation of Synthesis Gas on Platinum at Low Temperatures for Power Generation Applications," Energies, MDPI, vol. 11(6), pages 1-24, June.
    11. Merotto, L. & Fanciulli, C. & Dondè, R. & De Iuliis, S., 2016. "Study of a thermoelectric generator based on a catalytic premixed meso-scale combustor," Applied Energy, Elsevier, vol. 162(C), pages 346-353.
    12. Aravind, B. & Hiranandani, Karan & Kumar, Sudarshan, 2020. "Development of an ultra-high capacity hydrocarbon fuel based micro thermoelectric power generator," Energy, Elsevier, vol. 206(C).
    13. Shen, Rong & Li, Guoneng & Zhu, Yiyuan & Tang, Yuanjun & Guo, Wenwen & Zheng, Youqu & Huang, Kenan, 2024. "Development of a compact high-performance combustion powered thermoelectric generator based on swirl burner," Energy, Elsevier, vol. 286(C).
    14. Tang, Aikun & Deng, Jiang & Cai, Tao & Xu, Yiming & Pan, Jianfeng, 2017. "Combustion characteristics of premixed propane/hydrogen/air in the micro-planar combustor with different channel-heights," Applied Energy, Elsevier, vol. 203(C), pages 635-642.
    15. Vinay Sankar & Sreejith Sudarsanan & Sudipto Mukhopadhyay & Prabhu Selvaraj & Aravind Balakrishnan & Ratna Kishore Velamati, 2023. "Towards the Development of Miniature Scale Liquid Fuel Combustors for Power Generation Application—A Review," Energies, MDPI, vol. 16(10), pages 1-41, May.
    16. Jiaqiang, E. & Zuo, Wei & Liu, Xueling & Peng, Qingguo & Deng, Yuanwang & Zhu, Hao, 2016. "Effects of inlet pressure on wall temperature and exergy efficiency of the micro-cylindrical combustor with a step," Applied Energy, Elsevier, vol. 175(C), pages 337-345.
    17. Peng, Qingguo & Yang, Wenming & E, Jiaqiang & Li, Shaobo & Li, Zhenwei & Xu, Hongpeng & Fu, Guang, 2021. "Effects of propane addition and burner scale on the combustion characteristics and working performance," Applied Energy, Elsevier, vol. 285(C).
    18. Akhtar, Saad & Kurnia, Jundika C. & Shamim, Tariq, 2015. "A three-dimensional computational model of H2–air premixed combustion in non-circular micro-channels for a thermo-photovoltaic (TPV) application," Applied Energy, Elsevier, vol. 152(C), pages 47-57.
    19. Abedi, H. & Migliorini, F. & Dondè, R. & De Iuliis, S. & Passaretti, F. & Fanciulli, C., 2019. "Small size thermoelectric power supply for battery backup," Energy, Elsevier, vol. 188(C).
    20. Zuo, Wei & E, Jiaqiang & Liu, Haili & Peng, Qingguo & Zhao, Xiaohuan & Zhang, Zhiqing, 2016. "Numerical investigations on an improved micro-cylindrical combustor with rectangular rib for enhancing heat transfer," Applied Energy, Elsevier, vol. 184(C), pages 77-87.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6322-:d:649424. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.