IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v88y2011i12p4294-4309.html
   My bibliography  Save this article

A review of progress in heat recirculating meso-scale combustors

Author

Listed:
  • Shirsat, V.
  • Gupta, A.K.

Abstract

Within the past decade there has been a fair amount of interest in utilizing the high energy densities of hydrocarbon fuels at the small scale. The motivation for this is primarily twofold. The first application involves the generation of electricity via the heat released by combustion, in the second application chemical micro-thrusters would provide milli-Newton and micro-Newton levels of thrust for Divert and Attitude Control on the next generation of micro-satellites and micro-aerial vehicles. With this in mind many schemes addressing the fundamental thermal challenges associated with small-scale combustion have been proposed, analyzed, and tested. This review will focus on experimental work that has been conducted on heat-recirculating “Swiss-Roll” combustors and the impact of geometry, materials, catalysts, and scale on the thermal performance, extinction criteria/extinction regimes, and flame dynamics. Additionally, an overview of meso-scale power systems is provided covering both propulsion and electric power generation.

Suggested Citation

  • Shirsat, V. & Gupta, A.K., 2011. "A review of progress in heat recirculating meso-scale combustors," Applied Energy, Elsevier, vol. 88(12), pages 4294-4309.
  • Handle: RePEc:eee:appene:v:88:y:2011:i:12:p:4294-4309
    DOI: 10.1016/j.apenergy.2011.07.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261911004661
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2011.07.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vijayan, V. & Gupta, A.K., 2010. "Combustion and heat transfer at meso-scale with thermal recuperation," Applied Energy, Elsevier, vol. 87(8), pages 2628-2639, August.
    2. Vijayan, V. & Gupta, A.K., 2011. "Thermal performance of a meso-scale liquid-fuel combustor," Applied Energy, Elsevier, vol. 88(7), pages 2335-2343, July.
    3. Vijayan, V. & Gupta, A.K., 2010. "Flame dynamics of a meso-scale heat recirculating combustor," Applied Energy, Elsevier, vol. 87(12), pages 3718-3728, December.
    4. Lee, Min Jung & Kim, Nam Il, 2010. "Experiment on the effect of Pt-catalyst on the characteristics of a small heat-regenerative CH4-air premixed combustor," Applied Energy, Elsevier, vol. 87(11), pages 3409-3416, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiaqiang, E. & Zuo, Wei & Liu, Xueling & Peng, Qingguo & Deng, Yuanwang & Zhu, Hao, 2016. "Effects of inlet pressure on wall temperature and exergy efficiency of the micro-cylindrical combustor with a step," Applied Energy, Elsevier, vol. 175(C), pages 337-345.
    2. Wierzbicki, Teresa A. & Lee, Ivan C. & Gupta, Ashwani K., 2014. "Performance of synthetic jet fuels in a meso-scale heat recirculating combustor," Applied Energy, Elsevier, vol. 118(C), pages 41-47.
    3. Zuo, Wei & E, Jiaqiang & Hu, Wenyu & Jin, Yu & Han, Dandan, 2017. "Numerical investigations on combustion characteristics of H2/air premixed combustion in a micro elliptical tube combustor," Energy, Elsevier, vol. 126(C), pages 1-12.
    4. Akhtar, Saad & Khan, Mohammed N. & Kurnia, Jundika C. & Shamim, Tariq, 2017. "Investigation of energy conversion and flame stability in a curved micro-combustor for thermo-photovoltaic (TPV) applications," Applied Energy, Elsevier, vol. 192(C), pages 134-145.
    5. Merotto, L. & Fanciulli, C. & Dondè, R. & De Iuliis, S., 2016. "Study of a thermoelectric generator based on a catalytic premixed meso-scale combustor," Applied Energy, Elsevier, vol. 162(C), pages 346-353.
    6. Tang, Aikun & Deng, Jiang & Cai, Tao & Xu, Yiming & Pan, Jianfeng, 2017. "Combustion characteristics of premixed propane/hydrogen/air in the micro-planar combustor with different channel-heights," Applied Energy, Elsevier, vol. 203(C), pages 635-642.
    7. Fanciulli, C. & Abedi, H. & Merotto, L. & Dondè, R. & De Iuliis, S. & Passaretti, F., 2018. "Portable thermoelectric power generation based on catalytic combustor for low power electronic equipment," Applied Energy, Elsevier, vol. 215(C), pages 300-308.
    8. Akhtar, Saad & Kurnia, Jundika C. & Shamim, Tariq, 2015. "A three-dimensional computational model of H2–air premixed combustion in non-circular micro-channels for a thermo-photovoltaic (TPV) application," Applied Energy, Elsevier, vol. 152(C), pages 47-57.
    9. Zuo, Wei & E, Jiaqiang & Liu, Haili & Peng, Qingguo & Zhao, Xiaohuan & Zhang, Zhiqing, 2016. "Numerical investigations on an improved micro-cylindrical combustor with rectangular rib for enhancing heat transfer," Applied Energy, Elsevier, vol. 184(C), pages 77-87.
    10. Liu, Zeqi & Liu, Wanhao & Du, Yiqing & Fan, Aiwu, 2024. "Experimental study on the propagation characteristics of non-premixed H2/air flames in a curved micro-combustor," Energy, Elsevier, vol. 299(C).
    11. Gurunadh Velidi & Chun Sang Yoo, 2023. "A Review on Flame Stabilization Technologies for UAV Engine Micro-Meso Scale Combustors: Progress and Challenges," Energies, MDPI, vol. 16(9), pages 1-44, May.
    12. Vijayan, V. & Gupta, A.K., 2011. "Thermal performance of a meso-scale liquid-fuel combustor," Applied Energy, Elsevier, vol. 88(7), pages 2335-2343, July.
    13. Zhao, Zhengyang & Wang, Wei & Zuo, Zhengxing & Kuang, Nianling, 2022. "Investigation on the flame characteristics of premixed propane/air in a micro opposed flow porous combustor," Energy, Elsevier, vol. 238(PA).
    14. Zuo, Wei & E, Jiaqiang & Peng, Qingguo & Zhao, Xiaohuan & Zhang, Zhiqing, 2017. "Numerical investigations on a comparison between counterflow and coflow double-channel micro combustors for micro-thermophotovoltaic system," Energy, Elsevier, vol. 122(C), pages 408-419.
    15. Cai, Tao & Tang, Aikun & Zhao, Dan & Zhou, Chen & Huang, Qiuhan, 2020. "Flame dynamics and stability of premixed methane/air in micro-planar quartz combustors," Energy, Elsevier, vol. 193(C).
    16. Wierzbicki, Teresa A. & Lee, Ivan C. & Gupta, Ashwani K., 2015. "Rh assisted catalytic oxidation of jet fuel surrogates in a meso-scale combustor," Applied Energy, Elsevier, vol. 145(C), pages 1-7.
    17. Wierzbicki, Teresa A. & Lee, Ivan C. & Gupta, Ashwani K., 2014. "Combustion of propane with Pt and Rh catalysts in a meso-scale heat recirculating combustor," Applied Energy, Elsevier, vol. 130(C), pages 350-356.
    18. Wang, Wei & Zuo, Zhengxing & Liu, Jinxiang, 2019. "Numerical study of the premixed propane/air flame characteristics in a partially filled micro porous combustor," Energy, Elsevier, vol. 167(C), pages 902-911.
    19. Aravind, B. & Khandelwal, Bhupendra & Kumar, Sudarshan, 2018. "Experimental investigations on a new high intensity dual microcombustor based thermoelectric micropower generator," Applied Energy, Elsevier, vol. 228(C), pages 1173-1181.
    20. Vinay Sankar & Sreejith Sudarsanan & Sudipto Mukhopadhyay & Prabhu Selvaraj & Aravind Balakrishnan & Ratna Kishore Velamati, 2023. "Towards the Development of Miniature Scale Liquid Fuel Combustors for Power Generation Application—A Review," Energies, MDPI, vol. 16(10), pages 1-41, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:88:y:2011:i:12:p:4294-4309. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.