IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i6p1575-d152711.html
   My bibliography  Save this article

Catalytic Oxidation of Synthesis Gas on Platinum at Low Temperatures for Power Generation Applications

Author

Listed:
  • Junjie Chen

    (Department of Energy and Power Engineering, School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo 454000, Henan, China)

  • Longfei Yan

    (Department of Energy and Power Engineering, School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo 454000, Henan, China)

  • Wenya Song

    (Department of Energy and Power Engineering, School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo 454000, Henan, China)

  • Deguang Xu

    (Department of Energy and Power Engineering, School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo 454000, Henan, China)

Abstract

This paper addresses the issues related to the low-temperature catalytic oxidation of synthesis gas at high pressures under lean-burn conditions. The purpose of this study is to explore the mechanism responsible for the interplay between carbon monoxide and hydrogen during their combined oxidation process. Particular attention is given to the temperature range from 500 to 770 K, which is relevant to the catalyst inlet temperature encountered in catalytic combustion gas turbine systems. Computational fluid dynamics simulations were performed by using a numerical model with detailed chemistry and transport. Reaction path analysis was conducted, and the rate-determining step in the reaction mechanism was finally identified. It was shown that there is a strong interplay between carbon monoxide and hydrogen during the combined oxidation process. The addition of hydrogen causes a great change in the adsorbed species on the surface of the catalyst. At temperatures as low as 600 K, the presence of hydrogen makes the active surface sites more available for adsorption, thus promoting the catalytic oxidation of carbon monoxide. The coupling steps between the two components make a small contribution to the promoting effect. At temperatures below 520 K, the presence of hydrogen inhibits the catalytic oxidation of carbon monoxide due to the competitive effect of hydrogen on oxygen adsorption.

Suggested Citation

  • Junjie Chen & Longfei Yan & Wenya Song & Deguang Xu, 2018. "Catalytic Oxidation of Synthesis Gas on Platinum at Low Temperatures for Power Generation Applications," Energies, MDPI, vol. 11(6), pages 1-24, June.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:6:p:1575-:d:152711
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/6/1575/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/6/1575/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Merotto, L. & Fanciulli, C. & Dondè, R. & De Iuliis, S., 2016. "Study of a thermoelectric generator based on a catalytic premixed meso-scale combustor," Applied Energy, Elsevier, vol. 162(C), pages 346-353.
    2. Harun, Nor Farida & Tucker, David & Adams II, Thomas A., 2017. "Technical challenges in operating an SOFC in fuel flexible gas turbine hybrid systems: Coupling effects of cathode air mass flow," Applied Energy, Elsevier, vol. 190(C), pages 852-867.
    3. Li, Yueh-Heng & Hong, Jing-Ru, 2018. "Performance assessment of catalytic combustion-driven thermophotovoltaic platinum tubular reactor," Applied Energy, Elsevier, vol. 211(C), pages 843-853.
    4. Tolmachoff, Erik D. & Allmon, William & Waits, C. Mike, 2014. "Analysis of a high throughput n-dodecane fueled heterogeneous/homogeneous parallel plate microreactor for portable power conversion," Applied Energy, Elsevier, vol. 128(C), pages 111-118.
    5. Ilbas, Mustafa & Karyeyen, Serhat, 2017. "Turbulent diffusion flames of a low-calorific value syngas under varying turbulator angles," Energy, Elsevier, vol. 138(C), pages 383-393.
    6. Fumey, B. & Buetler, T. & Vogt, U.F., 2018. "Ultra-low NOx emissions from catalytic hydrogen combustion," Applied Energy, Elsevier, vol. 213(C), pages 334-342.
    7. Fanciulli, C. & Abedi, H. & Merotto, L. & Dondè, R. & De Iuliis, S. & Passaretti, F., 2018. "Portable thermoelectric power generation based on catalytic combustor for low power electronic equipment," Applied Energy, Elsevier, vol. 215(C), pages 300-308.
    8. Harun, Nor Farida & Tucker, David & Adams, Thomas A., 2016. "Impact of fuel composition transients on SOFC performance in gas turbine hybrid systems," Applied Energy, Elsevier, vol. 164(C), pages 446-461.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bhanuprakash Reddy Guggilla & Jack Perelman Camins & Benjamin Taylor & Smitesh Bakrania, 2021. "Examining Thermal Management Strategies for a Microcombustion Power Device," Energies, MDPI, vol. 14(19), pages 1-14, October.
    2. Aravind, B. & Khandelwal, Bhupendra & Ramakrishna, P.A. & Kumar, Sudarshan, 2020. "Towards the development of a high power density, high efficiency, micro power generator," Applied Energy, Elsevier, vol. 261(C).
    3. Fanciulli, C. & Abedi, H. & Merotto, L. & Dondè, R. & De Iuliis, S. & Passaretti, F., 2018. "Portable thermoelectric power generation based on catalytic combustor for low power electronic equipment," Applied Energy, Elsevier, vol. 215(C), pages 300-308.
    4. Abedi, H. & Migliorini, F. & Dondè, R. & De Iuliis, S. & Passaretti, F. & Fanciulli, C., 2019. "Small size thermoelectric power supply for battery backup," Energy, Elsevier, vol. 188(C).
    5. Li, Guoneng & Zhu, Zhihao & Zheng, Youqu & Guo, Wenwen & Tang, Yuanjun & Ye, Chao, 2023. "Experiments on a powerful, ultra-clean, and low-noise-level swirl-combustion-powered micro thermoelectric generator," Energy, Elsevier, vol. 263(PB).
    6. Lee, Kanghun & Kang, Sanggyu & Ahn, Kook-Young, 2017. "Development of a highly efficient solid oxide fuel cell system," Applied Energy, Elsevier, vol. 205(C), pages 822-833.
    7. E, Jiaqiang & Luo, Bo & Han, Dandan & Chen, Jingwei & Liao, Gaoliang & Zhang, Feng & Ding, Jiangjun, 2022. "A comprehensive review on performance improvement of micro energy mechanical system: Heat transfer, micro combustion and energy conversion," Energy, Elsevier, vol. 239(PE).
    8. Krummrein, T. & Henke, M. & Kutne, P. & Aigner, M., 2018. "Numerical analysis of operating range and SOFC-off-gas combustor requirements of a biogas powered SOFC-MGT hybrid power plant," Applied Energy, Elsevier, vol. 232(C), pages 598-606.
    9. Zhu, Xingzhuang & Zuo, Zhengxing & Wang, Wei & Jia, Boru & Zhan, Tianzhuo, 2023. "Experimental research and optimization of a thermoelectric generator excited by pulsed combustion mode under limited heat dissipation for combined heat and power supply," Applied Energy, Elsevier, vol. 349(C).
    10. Zhuang Kang & Zhiwei Shi & Jiahao Ye & Xinghua Tian & Zhixin Huang & Hao Wang & Depeng Wei & Qingguo Peng & Yaojie Tu, 2023. "A Review of Micro Power System and Micro Combustion: Present Situation, Techniques and Prospects," Energies, MDPI, vol. 16(7), pages 1-28, April.
    11. Azizi, Mohammad Ali & Brouwer, Jacob, 2018. "Progress in solid oxide fuel cell-gas turbine hybrid power systems: System design and analysis, transient operation, controls and optimization," Applied Energy, Elsevier, vol. 215(C), pages 237-289.
    12. Choi, Wonjae & Kim, Jaehyun & Kim, Yongtae & Song, Han Ho, 2019. "Solid oxide fuel cell operation in a solid oxide fuel cell–internal combustion engine hybrid system and the design point performance of the hybrid system," Applied Energy, Elsevier, vol. 254(C).
    13. Mustafa, K.F. & Abdullah, S. & Abdullah, M.Z. & Sopian, K., 2017. "A review of combustion-driven thermoelectric (TE) and thermophotovoltaic (TPV) power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 572-584.
    14. Aravind, B. & Hiranandani, Karan & Kumar, Sudarshan, 2020. "Development of an ultra-high capacity hydrocarbon fuel based micro thermoelectric power generator," Energy, Elsevier, vol. 206(C).
    15. He, Ziqiang & Yan, Yunfei & Zhao, Ting & Zhang, Zhien & Mikulčić, Hrvoje, 2022. "Parametric study of inserting internal spiral fins on the micro combustor performance for thermophotovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    16. Guggilla, Bhanuprakash Reddy & Rusted, Alexander & Bakrania, Smitesh, 2019. "Platinum nanoparticle catalysis of methanol for thermoelectric power generation," Applied Energy, Elsevier, vol. 237(C), pages 155-162.
    17. Li, Guoneng & Zheng, Youqu & Guo, Wenwen & Zhu, Dongya & Tang, Yuanjun, 2020. "Mesoscale combustor-powered thermoelectric generator: Experimental optimization and evaluation metrics," Applied Energy, Elsevier, vol. 272(C).
    18. Aravind, B. & Khandelwal, Bhupendra & Kumar, Sudarshan, 2018. "Experimental investigations on a new high intensity dual microcombustor based thermoelectric micropower generator," Applied Energy, Elsevier, vol. 228(C), pages 1173-1181.
    19. Hiranandani, Karan & Aravind, B. & Ratna Kishore, V. & Kumar, Sudarshan, 2020. "Development of a numerical model for performance prediction of an integrated microcombustor-thermoelectric power generator," Energy, Elsevier, vol. 192(C).
    20. Shen, Rong & Gou, Xiaolong & Xu, Haoyu & Qiu, Kuanrong, 2017. "Dynamic performance analysis of a cascaded thermoelectric generator," Applied Energy, Elsevier, vol. 203(C), pages 808-815.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:6:p:1575-:d:152711. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.