IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i19p6316-d649302.html
   My bibliography  Save this article

Machine Learning-Based Condition Monitoring for PV Systems: State of the Art and Future Prospects

Author

Listed:
  • Tarek Berghout

    (Laboratory of Automation and Manufacturing Engineering, University of Batna 2, Batna 05000, Algeria)

  • Mohamed Benbouzid

    (Institut de Recherche Dupuy de Lôme (UMR CNRS 6027), University of Brest, 29238 Brest, France
    Logistics Engineering College, Shanghai Maritime University, Shanghai 201306, China)

  • Toufik Bentrcia

    (Laboratory of Automation and Manufacturing Engineering, University of Batna 2, Batna 05000, Algeria)

  • Xiandong Ma

    (Engineering Department, Lancaster University, Lancaster LA1 4YW, UK)

  • Siniša Djurović

    (Department of Electrical and Electronic Engineering, University of Manchester, Manchester M1 3BB, UK)

  • Leïla-Hayet Mouss

    (Laboratory of Automation and Manufacturing Engineering, University of Batna 2, Batna 05000, Algeria)

Abstract

To ensure the continuity of electric power generation for photovoltaic systems, condition monitoring frameworks are subject to major enhancements. The continuous uniform delivery of electric power depends entirely on a well-designed condition maintenance program. A just-in-time task to deal with several naturally occurring faults can be correctly undertaken via the cooperation of effective detection, diagnosis, and prognostic analyses. Therefore, the present review first outlines different failure modes to which all photovoltaic systems are subjected, in addition to the essential integrated detection methods and technologies. Then, data-driven paradigms, and their contribution to solving this prediction problem, are also explored. Accordingly, this review primarily investigates the different learning architectures used (i.e., ordinary, hybrid, and ensemble) in relation to their learning frameworks (i.e., traditional and deep learning). It also discusses the extension of machine learning to knowledge-driven approaches, including generative models such as adversarial networks and transfer learning. Finally, this review provides insights into different works to highlight various operating conditions and different numbers and types of failures, and provides links to some publicly available datasets in the field. The clear organization of the abundant information on this subject may result in rigorous guidelines for the trends adopted in the future.

Suggested Citation

  • Tarek Berghout & Mohamed Benbouzid & Toufik Bentrcia & Xiandong Ma & Siniša Djurović & Leïla-Hayet Mouss, 2021. "Machine Learning-Based Condition Monitoring for PV Systems: State of the Art and Future Prospects," Energies, MDPI, vol. 14(19), pages 1-24, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6316-:d:649302
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/19/6316/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/19/6316/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alexander Frick & George Makrides & Markus Schubert & Matthias Schlecht & George E. Georghiou, 2020. "Degradation Rate Location Dependency of Photovoltaic Systems," Energies, MDPI, vol. 13(24), pages 1-20, December.
    2. Victor Andrean & Pei Cheng Chang & Kuo Lung Lian, 2018. "A Review and New Problems Discovery of Four Simple Decentralized Maximum Power Point Tracking Algorithms—Perturb and Observe, Incremental Conductance, Golden Section Search, and Newton’s Quadratic Int," Energies, MDPI, vol. 11(11), pages 1-25, November.
    3. Tarek Berghout & Mohamed Benbouzid & Leïla-Hayet Mouss, 2021. "Leveraging Label Information in a Knowledge-Driven Approach for Rolling-Element Bearings Remaining Useful Life Prediction," Energies, MDPI, vol. 14(8), pages 1-18, April.
    4. Diego R. Espinoza Trejo & Ernesto Bárcenas & José E. Hernández Díez & Guillermo Bossio & Gerardo Espinosa Pérez, 2018. "Open- and Short-Circuit Fault Identification for a Boost dc/dc Converter in PV MPPT Systems," Energies, MDPI, vol. 11(3), pages 1-15, March.
    5. Varaha Satra Bharath Kurukuru & Ahteshamul Haque & Mohammed Ali Khan & Subham Sahoo & Azra Malik & Frede Blaabjerg, 2021. "A Review on Artificial Intelligence Applications for Grid-Connected Solar Photovoltaic Systems," Energies, MDPI, vol. 14(15), pages 1-35, August.
    6. Jirada Gosumbonggot & Goro Fujita, 2019. "Partial Shading Detection and Global Maximum Power Point Tracking Algorithm for Photovoltaic with the Variation of Irradiation and Temperature," Energies, MDPI, vol. 12(2), pages 1-22, January.
    7. Selma Tchoketch Kebir & Nawal Cheggaga & Adrian Ilinca & Sabri Boulouma, 2021. "An Efficient Neural Network-Based Method for Diagnosing Faults of PV Array," Sustainability, MDPI, vol. 13(11), pages 1-27, May.
    8. Akram, M. Waqar & Li, Guiqiang & Jin, Yi & Chen, Xiao & Zhu, Changan & Zhao, Xudong & Khaliq, Abdul & Faheem, M. & Ahmad, Ashfaq, 2019. "CNN based automatic detection of photovoltaic cell defects in electroluminescence images," Energy, Elsevier, vol. 189(C).
    9. Lars Maaløe & Ole Winther & Sergiu Spataru & Dezso Sera, 2020. "Condition Monitoring in Photovoltaic Systems by Semi-Supervised Machine Learning," Energies, MDPI, vol. 13(3), pages 1-14, January.
    10. Andrew Kusiak, 2020. "Convolutional and generative adversarial neural networks in manufacturing," International Journal of Production Research, Taylor & Francis Journals, vol. 58(5), pages 1594-1604, March.
    11. Dušan Kudelas & Marcela Taušová & Peter Tauš & Ľubomíra Gabániová & Ján Koščo, 2019. "Investigation of Operating Parameters and Degradation of Photovoltaic Panels in a Photovoltaic Power Plant," Energies, MDPI, vol. 12(19), pages 1-15, September.
    12. Gabriele C. Eder & Yuliya Voronko & Christina Hirschl & Rita Ebner & Gusztáv Újvári & Wolfgang Mühleisen, 2018. "Non-Destructive Failure Detection and Visualization of Artificially and Naturally Aged PV Modules," Energies, MDPI, vol. 11(5), pages 1-14, April.
    13. Woo Gyun Shin & Suk Whan Ko & Hyung Jun Song & Young Chul Ju & Hye Mi Hwang & Gi Hwan Kang, 2018. "Origin of Bypass Diode Fault in c-Si Photovoltaic Modules: Leakage Current under High Surrounding Temperature," Energies, MDPI, vol. 11(9), pages 1-11, September.
    14. Jaeun Kim & Matheus Rabelo & Siva Parvathi Padi & Hasnain Yousuf & Eun-Chel Cho & Junsin Yi, 2021. "A Review of the Degradation of Photovoltaic Modules for Life Expectancy," Energies, MDPI, vol. 14(14), pages 1-21, July.
    15. Romênia G. Vieira & Fábio M. U. de Araújo & Mahmoud Dhimish & Maria I. S. Guerra, 2020. "A Comprehensive Review on Bypass Diode Application on Photovoltaic Modules," Energies, MDPI, vol. 13(10), pages 1-21, May.
    16. Ghoname Abdullah & Hidekazu Nishimura & Toshio Fujita, 2021. "An Experimental Investigation on Photovoltaic Array Power Output Affected by the Different Partial Shading Conditions," Energies, MDPI, vol. 14(9), pages 1-14, April.
    17. Mohamed Benbouzid & Tarek Berghout & Nur Sarma & Siniša Djurović & Yueqi Wu & Xiandong Ma, 2021. "Intelligent Condition Monitoring of Wind Power Systems: State of the Art Review," Energies, MDPI, vol. 14(18), pages 1-33, September.
    18. Lee, Changhun & Lim, Chiehyeon, 2021. "From technological development to social advance: A review of Industry 4.0 through machine learning," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    19. Mellit, Adel & Kalogirou, Soteris, 2021. "Artificial intelligence and internet of things to improve efficacy of diagnosis and remote sensing of solar photovoltaic systems: Challenges, recommendations and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    20. Tingting Pei & Xiaohong Hao, 2019. "A Fault Detection Method for Photovoltaic Systems Based on Voltage and Current Observation and Evaluation," Energies, MDPI, vol. 12(9), pages 1-16, May.
    21. Roberto Pierdicca & Marina Paolanti & Andrea Felicetti & Fabio Piccinini & Primo Zingaretti, 2020. "Automatic Faults Detection of Photovoltaic Farms: solAIr, a Deep Learning-Based System for Thermal Images," Energies, MDPI, vol. 13(24), pages 1-17, December.
    22. Ramadan J. Mustafa & Mohamed R. Gomaa & Mujahed Al-Dhaifallah & Hegazy Rezk, 2020. "Environmental Impacts on the Performance of Solar Photovoltaic Systems," Sustainability, MDPI, vol. 12(2), pages 1-17, January.
    23. Alfredo Gil-Velasco & Carlos Aguilar-Castillo, 2021. "A Modification of the Perturb and Observe Method to Improve the Energy Harvesting of PV Systems under Partial Shading Conditions," Energies, MDPI, vol. 14(9), pages 1-12, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Berghout, Tarek & Benbouzid, Mohamed & Muyeen, S.M., 2022. "Machine learning for cybersecurity in smart grids: A comprehensive review-based study on methods, solutions, and prospects," International Journal of Critical Infrastructure Protection, Elsevier, vol. 38(C).
    2. Masoud Emamian & Aref Eskandari & Mohammadreza Aghaei & Amir Nedaei & Amirmohammad Moradi Sizkouhi & Jafar Milimonfared, 2022. "Cloud Computing and IoT Based Intelligent Monitoring System for Photovoltaic Plants Using Machine Learning Techniques," Energies, MDPI, vol. 15(9), pages 1-25, April.
    3. Jelke Wibbeke & Payam Teimourzadeh Baboli & Sebastian Rohjans, 2022. "Optimal Data Reduction of Training Data in Machine Learning-Based Modelling: A Multidimensional Bin Packing Approach," Energies, MDPI, vol. 15(9), pages 1-13, April.
    4. Seyed Mahdi Miraftabzadeh & Cristian Giovanni Colombo & Michela Longo & Federica Foiadelli, 2023. "A Day-Ahead Photovoltaic Power Prediction via Transfer Learning and Deep Neural Networks," Forecasting, MDPI, vol. 5(1), pages 1-16, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdulla, Hind & Sleptchenko, Andrei & Nayfeh, Ammar, 2024. "Photovoltaic systems operation and maintenance: A review and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 195(C).
    2. Waqar Akram, M. & Li, Guiqiang & Jin, Yi & Chen, Xiao, 2022. "Failures of Photovoltaic modules and their Detection: A Review," Applied Energy, Elsevier, vol. 313(C).
    3. Mahmoud Dhimish & Pavlos I. Lazaridis, 2022. "Approximating Shading Ratio Using the Total-Sky Imaging System: An Application for Photovoltaic Systems," Energies, MDPI, vol. 15(21), pages 1-16, November.
    4. Turgut Karahüseyin & Serkan Abbasoğlu, 2022. "Performance Loss Rates of a 1 MWp PV Plant with Various Tilt Angle, Orientation and Installed Environment in the Capital of Cyprus," Sustainability, MDPI, vol. 14(15), pages 1-23, July.
    5. Oyeniyi A. Alimi & Edson L. Meyer & Olufemi I. Olayiwola, 2022. "Solar Photovoltaic Modules’ Performance Reliability and Degradation Analysis—A Review," Energies, MDPI, vol. 15(16), pages 1-28, August.
    6. Giovanni Cipriani & Antonino D’Amico & Stefania Guarino & Donatella Manno & Marzia Traverso & Vincenzo Di Dio, 2020. "Convolutional Neural Network for Dust and Hotspot Classification in PV Modules," Energies, MDPI, vol. 13(23), pages 1-17, December.
    7. Gomathy Balasubramani & Venkatesan Thangavelu & Muniraj Chinnusamy & Umashankar Subramaniam & Sanjeevikumar Padmanaban & Lucian Mihet-Popa, 2020. "Infrared Thermography Based Defects Testing of Solar Photovoltaic Panel with Fuzzy Rule-Based Evaluation," Energies, MDPI, vol. 13(6), pages 1-14, March.
    8. Christopher Gradwohl & Vesna Dimitrievska & Federico Pittino & Wolfgang Muehleisen & András Montvay & Franz Langmayr & Thomas Kienberger, 2021. "A Combined Approach for Model-Based PV Power Plant Failure Detection and Diagnostic," Energies, MDPI, vol. 14(5), pages 1-23, February.
    9. Mohamed Benghanem & Adel Mellit & Chourouk Moussaoui, 2023. "Embedded Hybrid Model (CNN–ML) for Fault Diagnosis of Photovoltaic Modules Using Thermographic Images," Sustainability, MDPI, vol. 15(10), pages 1-20, May.
    10. Michael W. Hopwood & Lekha Patel & Thushara Gunda, 2022. "Classification of Photovoltaic Failures with Hidden Markov Modeling, an Unsupervised Statistical Approach," Energies, MDPI, vol. 15(14), pages 1-12, July.
    11. Adel Mellit & Omar Herrak & Catalina Rus Casas & Alessandro Massi Pavan, 2021. "A Machine Learning and Internet of Things-Based Online Fault Diagnosis Method for Photovoltaic Arrays," Sustainability, MDPI, vol. 13(23), pages 1-14, November.
    12. Gianfranco Di Lorenzo & Erika Stracqualursi & Leonardo Micheli & Salvatore Celozzi & Rodolfo Araneo, 2022. "Prognostic Methods for Photovoltaic Systems’ Underperformance and Degradation: Status, Perspectives, and Challenges," Energies, MDPI, vol. 15(17), pages 1-6, September.
    13. Tuhibur Rahman & Ahmed Al Mansur & Molla Shahadat Hossain Lipu & Md. Siddikur Rahman & Ratil H. Ashique & Mohamad Abou Houran & Rajvikram Madurai Elavarasan & Eklas Hossain, 2023. "Investigation of Degradation of Solar Photovoltaics: A Review of Aging Factors, Impacts, and Future Directions toward Sustainable Energy Management," Energies, MDPI, vol. 16(9), pages 1-30, April.
    14. Tang, Wuqin & Yang, Qiang & Dai, Zhou & Yan, Wenjun, 2024. "Module defect detection and diagnosis for intelligent maintenance of solar photovoltaic plants: Techniques, systems and perspectives," Energy, Elsevier, vol. 297(C).
    15. Høiaas, Ingeborg & Grujic, Katarina & Imenes, Anne Gerd & Burud, Ingunn & Olsen, Espen & Belbachir, Nabil, 2022. "Inspection and condition monitoring of large-scale photovoltaic power plants: A review of imaging technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    16. Krzysztof Łowczowski & Jacek Roman, 2023. "Techno-Economic Analysis of Alternative PV Orientations in Poland by Rescaling Real PV Profiles," Energies, MDPI, vol. 16(17), pages 1-18, August.
    17. Bilal Taghezouit & Fouzi Harrou & Cherif Larbes & Ying Sun & Smail Semaoui & Amar Hadj Arab & Salim Bouchakour, 2022. "Intelligent Monitoring of Photovoltaic Systems via Simplicial Empirical Models and Performance Loss Rate Evaluation under LabVIEW: A Case Study," Energies, MDPI, vol. 15(21), pages 1-30, October.
    18. Kellil, N. & Aissat, A. & Mellit, A., 2023. "Fault diagnosis of photovoltaic modules using deep neural networks and infrared images under Algerian climatic conditions," Energy, Elsevier, vol. 263(PC).
    19. Woo-Gyun Shin & Ju-Young Shin & Hye-Mi Hwang & Chi-Hong Park & Suk-Whan Ko, 2022. "Power Generation Prediction of Building-Integrated Photovoltaic System with Colored Modules Using Machine Learning," Energies, MDPI, vol. 15(7), pages 1-17, April.
    20. Faris Alqurashi & Rached Nciri & Abdulrahman Alghamdi & Chaouki Ali & Faouzi Nasri, 2022. "Control of the Solar Radiation Reception Rate (SRRR) Using a Novel Poly-Tilted Segmented Panel (PTSP) in the Region of Makkah, Saudi Arabia," Energies, MDPI, vol. 15(7), pages 1-15, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6316-:d:649302. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.