IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i9p5515-d808469.html
   My bibliography  Save this article

Biomass Potential and Utilization in Worldwide Research Trends—A Bibliometric Analysis

Author

Listed:
  • Ardit Sertolli

    (Institute of Applied Economics, Faculty of Economics and Business, University of Debrecen, 4032 Debrecen, Hungary)

  • Zoltán Gabnai

    (Institute of Applied Economics, Faculty of Economics and Business, University of Debrecen, 4032 Debrecen, Hungary)

  • Péter Lengyel

    (Institute of Applied Informatics and Logistics, Faculty of Economics and Business, University of Debrecen, 4032 Debrecen, Hungary)

  • Attila Bai

    (Institute of Applied Economics, Faculty of Economics and Business, University of Debrecen, 4032 Debrecen, Hungary)

Abstract

Biomass, as a part of renewables, is a resource found in large quantities and is a basis for many different industries. This paper presents the most important trends and characteristics of research in biomass potential and biomass utilization on a world scale. The main objective of this work is to analyze the state of research and trends in biomass potential and biomass utilization from 1974 to 2021, including 7117 relevant documents. The methodology part comprised two main stages: obtaining data from Scopus and then exporting the data into Excel. The VOSviewer bibliometric tool was used to analyze clusters of countries and groups of keywords. Research on this topic experienced significant development after 2000; moreover, the global trend of publications marked a significant increase after 2012. China and India have shown exponential growth, followed by USA, Germany, and UK. An important trend globally is that energy topics are gaining more importance and percentage annually, especially in photovoltaics and new generations of biofuels in terms of keywords. The paper aims to provide a tool for the scientific community by introducing the current state and potential tendencies in this special field, including the various sides of biomass use.

Suggested Citation

  • Ardit Sertolli & Zoltán Gabnai & Péter Lengyel & Attila Bai, 2022. "Biomass Potential and Utilization in Worldwide Research Trends—A Bibliometric Analysis," Sustainability, MDPI, vol. 14(9), pages 1-20, May.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:9:p:5515-:d:808469
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/9/5515/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/9/5515/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Brennan, Liam & Owende, Philip, 2010. "Biofuels from microalgae--A review of technologies for production, processing, and extractions of biofuels and co-products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 557-577, February.
    2. Tamás Mizik, 2021. "Economic Aspects and Sustainability of Ethanol Production—A Systematic Literature Review," Energies, MDPI, vol. 14(19), pages 1-25, September.
    3. Ji, Xi & Liu, Yifang & Meng, Jing & Wu, Xudong, 2020. "Global supply chain of biomass use and the shift of environmental welfare from primary exploiters to final consumers," Applied Energy, Elsevier, vol. 276(C).
    4. Lin, Cherng-Yuan & Lu, Cherie, 2021. "Development perspectives of promising lignocellulose feedstocks for production of advanced generation biofuels: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    5. Miguel-Angel Perea-Moreno & Esther Samerón-Manzano & Alberto-Jesus Perea-Moreno, 2019. "Biomass as Renewable Energy: Worldwide Research Trends," Sustainability, MDPI, vol. 11(3), pages 1-19, February.
    6. Osman, Ahmed I. & Qasim, Umair & Jamil, Farrukh & Al-Muhtaseb, Ala'a H. & Jrai, Ahmad Abu & Al-Riyami, Mohammed & Al-Maawali, Suhaib & Al-Haj, Lamya & Al-Hinai, Amer & Al-Abri, Mohammed & Inayat, Abra, 2021. "Bioethanol and biodiesel: Bibliometric mapping, policies and future needs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    7. Carmen De la Cruz-Lovera & Alberto-Jesús Perea-Moreno & José-Luis De la Cruz-Fernández & José Antonio Alvarez-Bermejo & Francisco Manzano-Agugliaro, 2017. "Worldwide Research on Energy Efficiency and Sustainability in Public Buildings," Sustainability, MDPI, vol. 9(8), pages 1-20, July.
    8. Szarka, Nora & Haufe, Henryk & Lange, Nora & Schier, Franziska & Weimar, Holger & Banse, Martin & Sturm, Viktoriya & Dammer, Lara & Piotrowski, Stephan & Thrän, Daniela, 2021. "Biomass flow in bioeconomy: Overview for Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    9. Soltero, V.M. & Chacartegui, R. & Ortiz, C. & Velázquez, R., 2018. "Potential of biomass district heating systems in rural areas," Energy, Elsevier, vol. 156(C), pages 132-143.
    10. Jarosław Brodny & Magdalena Tutak, 2020. "Analyzing Similarities between the European Union Countries in Terms of the Structure and Volume of Energy Production from Renewable Energy Sources," Energies, MDPI, vol. 13(4), pages 1-37, February.
    11. Esther Salmerón-Manzano & Francisco Manzano-Agugliaro, 2018. "The Higher Education Sustainability through Virtual Laboratories: The Spanish University as Case of Study," Sustainability, MDPI, vol. 10(11), pages 1-22, November.
    12. Barbara S. Lancho-Barrantes & Francisco J. Cantu-Ortiz, 2021. "Quantifying the publication preferences of leading research universities," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(3), pages 2269-2310, March.
    13. Zoltán Szakály & Péter Balogh & Enikő Kontor & Zoltán Gabnai & Attila Bai, 2020. "Attitude toward and Awareness of Renewable Energy Sources: Hungarian Experience and Special Features," Energies, MDPI, vol. 14(1), pages 1-25, December.
    14. Popp, József & Harangi-Rákos, Mónika & Petô, Károly & Nagy, Adrian Szilard, 2013. "Bioenergy: Risks to food-, energy- and environmental Security," APSTRACT: Applied Studies in Agribusiness and Commerce, AGRIMBA, vol. 7(4-5), pages 1-10.
    15. Miguel-Angel Perea-Moreno & Francisco Manzano-Agugliaro & Alberto-Jesus Perea-Moreno, 2018. "Sustainable Energy Based on Sunflower Seed Husk Boiler for Residential Buildings," Sustainability, MDPI, vol. 10(10), pages 1-20, September.
    16. Naik, S.N. & Goud, Vaibhav V. & Rout, Prasant K. & Dalai, Ajay K., 2010. "Production of first and second generation biofuels: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 578-597, February.
    17. Heinz Kopetz, 2013. "Build a biomass energy market," Nature, Nature, vol. 494(7435), pages 29-31, February.
    18. Ruifeng Gong & Jian Xue & Laijun Zhao & Oleksandra Zolotova & Xiaoqing Ji & Yan Xu, 2019. "A Bibliometric Analysis of Green Supply Chain Management Based on the Web of Science (WOS) Platform," Sustainability, MDPI, vol. 11(12), pages 1-18, June.
    19. Marianne Duquenne & Hélène Prost & Joachim Schöpfel & Franck Dumeignil, 2020. "Open Bioeconomy—A Bibliometric Study on the Accessibility of Articles in the Field of Bioeconomy," Publications, MDPI, vol. 8(4), pages 1-33, December.
    20. Karthikeyan Natarajan & Petri Latva-Käyrä & Anas Zyadin & Suresh Chauhan & Harminder Singh & Ari Pappinen & Paavo Pelkonen, 2015. "Biomass Resource Assessment and Existing Biomass Use in the Madhya Pradesh, Maharashtra, and Tamil Nadu States of India," Challenges, MDPI, vol. 6(1), pages 1-15, May.
    21. Markus M. Bugge & Teis Hansen & Antje Klitkou, 2016. "What Is the Bioeconomy? A Review of the Literature," Sustainability, MDPI, vol. 8(7), pages 1-22, July.
    22. József Popp & Péter Balogh & Judit Oláh & Sebastian Kot & Mónika Harangi Rákos & Péter Lengyel, 2018. "Social Network Analysis of Scientific Articles Published by Food Policy," Sustainability, MDPI, vol. 10(3), pages 1-20, February.
    23. Enric Camón Luis & Dolors Celma, 2020. "Circular Economy. A Review and Bibliometric Analysis," Sustainability, MDPI, vol. 12(16), pages 1-23, August.
    24. Fang, Yi & Paul, Manosh C. & Varjani, Sunita & Li, Xian & Park, Young-Kwon & You, Siming, 2021. "Concentrated solar thermochemical gasification of biomass: Principles, applications, and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    25. Gábor Pintér & Henrik Zsiborács & Nóra Hegedűsné Baranyai, 2022. "Aspects of Determining the Energy Storage System Size Linked to Household-Sized Power Plants in Hungary in Accordance with the Regulatory Needs of the Electric Energy System," Sustainability, MDPI, vol. 14(5), pages 1-19, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Albiona Pestisha & Zoltán Gabnai & Aidana Chalgynbayeva & Péter Lengyel & Attila Bai, 2023. "On-Farm Renewable Energy Systems: A Systematic Review," Energies, MDPI, vol. 16(2), pages 1-25, January.
    2. Ramanauske, Neringa & Balezentis, Tomas & Streimikiene, Dalia, 2023. "Biomass use and its implications for bioeconomy development: A resource efficiency perspective for the European countries," Technological Forecasting and Social Change, Elsevier, vol. 193(C).
    3. Korus, Agnieszka & Jagiello, Jacek & Jaroszek, Hanna & Copik, Paulina & Szlęk, Andrzej, 2024. "Variation of pore development scenarios by changing gasification atmosphere and temperature," Energy, Elsevier, vol. 289(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miguel-Angel Perea-Moreno & Esther Samerón-Manzano & Alberto-Jesus Perea-Moreno, 2019. "Biomass as Renewable Energy: Worldwide Research Trends," Sustainability, MDPI, vol. 11(3), pages 1-19, February.
    2. Miguel-Angel Perea-Moreno & Quetzalcoatl Hernandez-Escobedo & Fernando Rueda-Martinez & Alberto-Jesus Perea-Moreno, 2020. "Zapote Seed ( Pouteria mammosa L. ) Valorization for Thermal Energy Generation in Tropical Climates," Sustainability, MDPI, vol. 12(10), pages 1-21, May.
    3. Renzo Seminario-Córdova & Raúl Rojas-Ortega, 2023. "Renewable Energy Sources and Energy Production: A Bibliometric Analysis of the Last Five Years," Sustainability, MDPI, vol. 15(13), pages 1-22, July.
    4. Atadashi, I.M. & Aroua, M.K. & Abdul Aziz, A.R. & Sulaiman, N.M.N., 2011. "Membrane biodiesel production and refining technology: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 5051-5062.
    5. Carmen de la Cruz-Lovera & Francisco Manzano-Agugliaro & Esther Salmerón-Manzano & José-Luis de la Cruz-Fernández & Alberto-Jesus Perea-Moreno, 2019. "Date Seeds ( Phoenix dactylifera L. ) Valorization for Boilers in the Mediterranean Climate," Sustainability, MDPI, vol. 11(3), pages 1-14, January.
    6. Bergthorson, Jeffrey M. & Thomson, Murray J., 2015. "A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1393-1417.
    7. Goh, Brandon Han Hoe & Ong, Hwai Chyuan & Cheah, Mei Yee & Chen, Wei-Hsin & Yu, Kai Ling & Mahlia, Teuku Meurah Indra, 2019. "Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 59-74.
    8. Vladimir Heredia & Olivier Gonçalves & Luc Marchal & Jeremy Pruvost, 2021. "Producing Energy-Rich Microalgae Biomass for Liquid Biofuels: Influence of Strain Selection and Culture Conditions," Energies, MDPI, vol. 14(5), pages 1-15, February.
    9. Maity, Sunil K., 2015. "Opportunities, recent trends and challenges of integrated biorefinery: Part II," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1446-1466.
    10. Dariusz Kurczyński & Grzegorz Wcisło & Piotr Łagowski, 2021. "Experimental Study of Fuel Consumption and Exhaust Gas Composition of a Diesel Engine Powered by Biodiesel from Waste of Animal Origin," Energies, MDPI, vol. 14(12), pages 1-22, June.
    11. Montalvo-Navarrete, Juan M. & Lasso-Palacios, Ana P., 2024. "Energy access sustainability criteria definition for Colombian rural areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    12. Marwa G. Saad & Noura S. Dosoky & Mohamed S. Zoromba & Hesham M. Shafik, 2019. "Algal Biofuels: Current Status and Key Challenges," Energies, MDPI, vol. 12(10), pages 1-22, May.
    13. Omojola Awogbemi & Daramy Vandi Von Kallon & Emmanuel Idoko Onuh & Victor Sunday Aigbodion, 2021. "An Overview of the Classification, Production and Utilization of Biofuels for Internal Combustion Engine Applications," Energies, MDPI, vol. 14(18), pages 1-43, September.
    14. Jessa DG. Carino & Pierangeli G. Vital, 2023. "Characterization of isolated UV-C-irradiated mutants of microalga Chlorella vulgaris for future biofuel application," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(2), pages 1258-1275, February.
    15. Suganya, T. & Varman, M. & Masjuki, H.H. & Renganathan, S., 2016. "Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: A biorefinery approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 909-941.
    16. Shah, Syed Hasnain & Raja, Iftikhar Ahmed & Rizwan, Muhammad & Rashid, Naim & Mahmood, Qaisar & Shah, Fayyaz Ali & Pervez, Arshid, 2018. "Potential of microalgal biodiesel production and its sustainability perspectives in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 76-92.
    17. Sharifzadeh, Mahdi & Wang, Lei & Shah, Nilay, 2015. "Integrated biorefineries: CO2 utilization for maximum biomass conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 151-161.
    18. Kosinkova, Jana & Doshi, Amar & Maire, Juliette & Ristovski, Zoran & Brown, Richard & Rainey, Thomas J., 2015. "Measuring the regional availability of biomass for biofuels and the potential for microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1271-1285.
    19. Correa, Diego F. & Beyer, Hawthorne L. & Possingham, Hugh P. & Thomas-Hall, Skye R. & Schenk, Peer M., 2017. "Biodiversity impacts of bioenergy production: Microalgae vs. first generation biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1131-1146.
    20. Quetzalcoatl Hernandez-Escobedo & David Muñoz-Rodríguez & Alejandro Vargas-Casillas & José Manuel Juárez Lopez & Pilar Aparicio-Martínez & María Pilar Martínez-Jiménez & Alberto-Jesus Perea-Moreno, 2022. "Renewable Energies in the Agricultural Sector: A Perspective Analysis of the Last Three Years," Energies, MDPI, vol. 16(1), pages 1-17, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:9:p:5515-:d:808469. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.