IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i10p1857-d231483.html
   My bibliography  Save this article

Sliding Mode Observer-Based Parameter Identification and Disturbance Compensation for Optimizing the Mode Predictive Control of PMSM

Author

Listed:
  • Meng Shao

    (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Yongting Deng

    (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China)

  • Hongwen Li

    (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China)

  • Jing Liu

    (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China)

  • Qiang Fei

    (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract

This paper reports on the optimal speed control problem in permanent magnet synchronous motor (PMSM) systems. To improve the speed control performance of a PMSM system, a model predictive control (MPC) method is incorporated into the control design of the speed loop. The control performance of the conventional MPC for PMSM systems is destroyed because of system disturbances such as parameter mismatches and external disturbances. To implement the MPC method in practical applications and to improve its robustness, a compensated scheme with an extended sliding mode observer (ESMO) is proposed in this paper. Firstly, for observing if and when the system model is mismatched, the ESMO is regarded as an extended sliding mode parameter observer (ESMPO) to identify the main mechanical parameters. The accurately obtained mechanical parameters are then updated into the MPC model. In addition, to overcome the influence of external load disturbances on the system, the observer is regarded as an extended sliding mode disturbance observer (ESMDO) to observe the unknown disturbances and provide a feed-forward compensation item based on the estimated disturbances to the model predictive speed controller. The simulation and experimental results show that the proposed ESMO can accurately observe the mechanical parameters of the system. Moreover, the optimized MPC improves the dynamic response behavior and exhibits a satisfactory disturbance rejection performance.

Suggested Citation

  • Meng Shao & Yongting Deng & Hongwen Li & Jing Liu & Qiang Fei, 2019. "Sliding Mode Observer-Based Parameter Identification and Disturbance Compensation for Optimizing the Mode Predictive Control of PMSM," Energies, MDPI, vol. 12(10), pages 1-22, May.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:10:p:1857-:d:231483
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/10/1857/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/10/1857/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mengmeng Tian & Hailiang Cai & Wenliang Zhao & Jie Ren, 2023. "Nonlinear Predictive Control of Interior Permanent Magnet Synchronous Machine with Extra Current Constraint," Energies, MDPI, vol. 16(2), pages 1-14, January.
    2. Mingfei Huang & Yongting Deng & Hongwen Li & Meng Shao & Jing Liu, 2021. "Integrated Uncertainty/Disturbance Suppression Based on Improved Adaptive Sliding Mode Controller for PMSM Drives," Energies, MDPI, vol. 14(20), pages 1-19, October.
    3. Fabiano C. Rosa & Edson Bim, 2020. "A Constrained Non-Linear Model Predictive Controller for the Rotor Flux-Oriented Control of an Induction Motor Drive," Energies, MDPI, vol. 13(15), pages 1-18, July.
    4. Yujiao Zhao & Haisheng Yu & Shixian Wang, 2021. "An Improved Super-Twisting High-Order Sliding Mode Observer for Sensorless Control of Permanent Magnet Synchronous Motor," Energies, MDPI, vol. 14(19), pages 1-18, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:10:p:1857-:d:231483. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.