IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i2p304-d306263.html
   My bibliography  Save this article

Propagation of Overvoltages in the Form of Impulse, Chopped and Oscillating Waveforms in Transformer Windings—Time and Frequency Domain Approach

Author

Listed:
  • Marek Florkowski

    (Department of Electrical and Power Engineering, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland)

  • Jakub Furgał

    (Department of Electrical and Power Engineering, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland)

  • Maciej Kuniewski

    (Department of Electrical and Power Engineering, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland)

Abstract

This paper describes a comparison of overvoltage propagation in transformer windings. Expanding and evolving electrical networks comprise various classes of transient waveforms, related to network reconfigurations, failure stages and switching phenomena, including new sources based on power electronics devices. In particular, the integration of renewable energy sources—mainly solar and wind—as well as expanding charging and energy storage infrastructure for electric cars in smart cities results in network flexibility manifested by switching phenomena and transients propagation, both impulse and oscillating. Those external transients, having a magnitude below the applied protection level may have still a considerable effect on winding electrical insulation in transformers, mainly due to internal resonance phenomena, which have been the root cause of many transformer failures. Such cases might occur if the frequency content of the incoming waveform matches the resonance zones of the winding frequency characteristic. Due to this coincidence, the measurements were performed both in time and frequency domain, applying various classes of transients, representing impulse, chopped (time to chopping from 1 µs to 50 µs) and oscillating overvoltages. An additional novelty was a superposition of a full lighting impulse with an oscillating component in the form of a modulated wavelet. The comparison of propagation of those waveforms along the winding length as well as a transfer case between high and low voltage windings were analyzed. The presented mapping of overvoltage prone zones along the winding length can contribute to transformer design optimization, development of novel diagnostic methodology, improved protection concepts and the proper design of modern networks.

Suggested Citation

  • Marek Florkowski & Jakub Furgał & Maciej Kuniewski, 2020. "Propagation of Overvoltages in the Form of Impulse, Chopped and Oscillating Waveforms in Transformer Windings—Time and Frequency Domain Approach," Energies, MDPI, vol. 13(2), pages 1-16, January.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:2:p:304-:d:306263
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/2/304/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/2/304/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rafael B. Rodrigues & Victor M. F. Mendes & João P. S. Catalão, 2012. "Analysis of Transient Phenomena Due to a Direct Lightning Strike on a Wind Energy System," Energies, MDPI, vol. 5(7), pages 1-14, July.
    2. Qing Yang & Peiyu Su & Yong Chen, 2017. "Comparison of Impulse Wave and Sweep Frequency Response Analysis Methods for Diagnosis of Transformer Winding Faults," Energies, MDPI, vol. 10(4), pages 1-16, March.
    3. Ziwei Zhang & Wensheng Gao & Tusongjiang Kari & Huan Lin, 2018. "Identification of Power Transformer Winding Fault Types by a Hierarchical Dimension Reduction Classifier," Energies, MDPI, vol. 11(9), pages 1-19, September.
    4. Avinash Srikanta Murthy & Norhafiz Azis & Mohd Fairouz Mohd Yousof & Jasronita Jasni & Mohammad Lutfi Othman & Mohd Aizam Talib & Bhaba Priyo Das, 2019. "Investigation on the Resonant Oscillations in an 11 kV Distribution Transformer under Standard and Chopped Lightning Impulse Overvoltages with Different Shield Placement Configurations," Energies, MDPI, vol. 12(8), pages 1-24, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jakub Furgał & Maciej Kuniewski & Piotr Pająk, 2020. "Analysis of Internal Overvoltages in Transformer Windings during Transients in Electrical Networks," Energies, MDPI, vol. 13(10), pages 1-20, May.
    2. Marek Florkowski & Jakub Furgał & Maciej Kuniewski & Piotr Pająk, 2020. "Overvoltage Impact on Internal Insulation Systems of Transformers in Electrical Networks with Vacuum Circuit Breakers," Energies, MDPI, vol. 13(23), pages 1-14, December.
    3. Arputhasamy Joseph Amalanathan & Ramanujam Sarathi & Maciej Zdanowski & Ravikrishnan Vinu & Zbigniew Nadolny, 2023. "Review on Gassing Tendency of Different Insulating Fluids towards Transformer Applications," Energies, MDPI, vol. 16(1), pages 1-15, January.
    4. Marek Florkowski & Jakub Furgał & Maciej Kuniewski, 2021. "Lightning Impulse Overvoltage Propagation in HVDC Meshed Grid," Energies, MDPI, vol. 14(11), pages 1-21, May.
    5. Bojan Trkulja & Ana Drandić & Viktor Milardić & Igor Žiger, 2021. "Evaluation of Methodology for Lightning Impulse Voltage Distribution over High-Voltage Windings of Inductive Voltage Transformers," Energies, MDPI, vol. 14(16), pages 1-15, August.
    6. Mahdi Pourakbari-Kasmaei & Farhan Mahmood & Michal Krbal & Ludek Pelikan & Jaroslava Orságová & Petr Toman & Matti Lehtonen, 2020. "Evaluation of Filtered Spark Gap on the Lightning Protection of Distribution Transformers: Experimental and Simulation Study," Energies, MDPI, vol. 13(15), pages 1-23, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song Wang & Shuang Wang & Ying Cui & Jie Long & Fuqiang Ren & Shengchang Ji & Shuhong Wang, 2020. "An Experimental Study of the Sweep Frequency Impedance Method on the Winding Deformation of an Onsite Power Transformer," Energies, MDPI, vol. 13(14), pages 1-13, July.
    2. Chunguang Suo & Yanan Ren & Wenbin Zhang & Yincheng Li & Yanyun Wang & Yi Ke, 2021. "Evaluation Method for Winding Performance of Distribution Transformer," Energies, MDPI, vol. 14(18), pages 1-25, September.
    3. Shariatinasab, Reza & Kermani, Behzad & Gholinezhad, Javad, 2019. "Transient modeling of the wind farms in order to analysis the lightning related overvoltages," Renewable Energy, Elsevier, vol. 132(C), pages 1151-1166.
    4. Maciej Kuniewski, 2020. "FRA Diagnostics Measurement of Winding Deformation in Model Single-Phase Transformers Made with Silicon-Steel, Amorphous and Nanocrystalline Magnetic Cores," Energies, MDPI, vol. 13(10), pages 1-23, May.
    5. Jun Jiang & Mingxin Zhao & Chaohai Zhang & Min Chen & Haojun Liu & Ricardo Albarracín, 2018. "Partial Discharge Analysis in High-Frequency Transformer Based on High-Frequency Current Transducer," Energies, MDPI, vol. 11(8), pages 1-13, August.
    6. Ukashatu Abubakar & Saad Mekhilef & Hazlie Mokhlis & Mehdi Seyedmahmoudian & Ben Horan & Alex Stojcevski & Hussain Bassi & Muhyaddin Jamal Hosin Rawa, 2018. "Transient Faults in Wind Energy Conversion Systems: Analysis, Modelling Methodologies and Remedies," Energies, MDPI, vol. 11(9), pages 1-33, August.
    7. Omid Elahi & Reza Behkam & Gevork B. Gharehpetian & Fazel Mohammadi, 2022. "Diagnosing Disk-Space Variation in Distribution Power Transformer Windings Using Group Method of Data Handling Artificial Neural Networks," Energies, MDPI, vol. 15(23), pages 1-32, November.
    8. Dante Ruiz-Robles & Vicente Venegas-Rebollar & Adolfo Anaya-Ruiz & Edgar L. Moreno-Goytia & Juan R. Rodríguez-Rodríguez, 2018. "Design and Prototyping Medium-Frequency Transformers Featuring a Nanocrystalline Core for DC–DC Converters," Energies, MDPI, vol. 11(8), pages 1-17, August.
    9. Liang Zou & Yongkang Guo & Han Liu & Li Zhang & Tong Zhao, 2017. "A Method of Abnormal States Detection Based on Adaptive Extraction of Transformer Vibro-Acoustic Signals," Energies, MDPI, vol. 10(12), pages 1-18, December.
    10. Avinash Srikanta Murthy & Norhafiz Azis & Jasronita Jasni & Mohammad Lutfi Othman & Mohd Fairouz Mohd Yousof & Mohd Aizam Talib, 2020. "Effect of shield placement for transient voltage mitigation due to switching surges in a 33/11 kV transformer windings," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-19, October.
    11. Zhongyong Zhao & Chao Tang & Qu Zhou & Lingna Xu & Yingang Gui & Chenguo Yao, 2017. "Identification of Power Transformer Winding Mechanical Fault Types Based on Online IFRA by Support Vector Machine," Energies, MDPI, vol. 10(12), pages 1-16, December.
    12. Lefeng Cheng & Tao Yu, 2018. "Dissolved Gas Analysis Principle-Based Intelligent Approaches to Fault Diagnosis and Decision Making for Large Oil-Immersed Power Transformers: A Survey," Energies, MDPI, vol. 11(4), pages 1-69, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:2:p:304-:d:306263. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.