IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v294y2024ics0360544224006236.html
   My bibliography  Save this article

An analytical study on the effect of different photovoltaic technologies on enviro-economic parameter and energy metrics of active solar desalting unit

Author

Listed:
  • Singh, Vivek
  • Kumar, Rakesh
  • Saxena, Abhishek
  • Dobriyal, Ritvik
  • Tiwari, Sumit
  • Singh, Desh Bandhu

Abstract

The enviro-economic and energy metrics analyses of the solar system by incorporating different photovoltaic technologies are required to fulfill the sustainable development goal of the United Nations. However, the effect of different photovoltaic technologies on the solar distillation system has not been informed by any of the researchers to date. This research gap has been explored in this study. The present manuscript is an endeavour to explore the best photovoltaic technology aimed at a single-slope solar desalting unit comprised of N identical photovoltaic thermal flat-plate-collectors. Data regarding all four weather conditions for a year for New Delhi's climate have been procured from the Indian Meteorological Department situated in the western part of India. Fundamental equations along with input data have been provided to a computational code developed in MATLAB for the estimation of various performance parameters. Concludingly, the energy payback time is minimum (1.64 years) for the case of copper indium gallium selenide photovoltaic technology, however, maximum values of life cycle conversion efficiency and net CO2 mitigation are respectively 0.171 and 199.10 tons of CO2 for the case of crystalline silicon photovoltaic technology. The carbon credit is also found to be a maximum (15269.25 US$) for crystalline silicon photovoltaic technology.

Suggested Citation

  • Singh, Vivek & Kumar, Rakesh & Saxena, Abhishek & Dobriyal, Ritvik & Tiwari, Sumit & Singh, Desh Bandhu, 2024. "An analytical study on the effect of different photovoltaic technologies on enviro-economic parameter and energy metrics of active solar desalting unit," Energy, Elsevier, vol. 294(C).
  • Handle: RePEc:eee:energy:v:294:y:2024:i:c:s0360544224006236
    DOI: 10.1016/j.energy.2024.130851
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224006236
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130851?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Karaca, Ali Erdogan & Dincer, Ibrahim & Nitefor, Michael, 2023. "A new renewable energy system integrated with compressed air energy storage and multistage desalination," Energy, Elsevier, vol. 268(C).
    2. Zhang, Xueyan & Wang, Xin & Li, Zhongzhe & Luo, Huilong & Chen, Fei, 2023. "Surface construction and optical performance analysis of compound parabolic concentrator with concentrating surface separated from absorber," Energy, Elsevier, vol. 282(C).
    3. Abedi, Mahyar & Tan, Xu & Klausner, James F. & Bénard, Andre, 2023. "Solar desalination chimneys: Investigation on the feasibility of integrating solar chimneys with humidification–dehumidification systems," Renewable Energy, Elsevier, vol. 202(C), pages 88-102.
    4. Moosazadeh, Mohammad & Tariq, Shahzeb & Safder, Usman & Yoo, ChangKyoo, 2023. "Techno-economic feasibility and environmental impact evaluation of a hybrid solar thermal membrane-based power desalination system," Energy, Elsevier, vol. 278(PA).
    5. Sovacool, Benjamin K., 2008. "Valuing the greenhouse gas emissions from nuclear power: A critical survey," Energy Policy, Elsevier, vol. 36(8), pages 2940-2953, August.
    6. Zuo, Lu & Liu, Zihan & Dai, Pengzhan & Qu, Ning & Ding, Ling & Zheng, Yuan & Ge, Yunting, 2021. "Economic performance evaluation of the wind supercharging solar chimney power plant combining desalination and waste heat after parameter optimization," Energy, Elsevier, vol. 227(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tsai, Bi-Huei & Chang, Chih-Jen & Chang, Chun-Hsien, 2016. "Elucidating the consumption and CO2 emissions of fossil fuels and low-carbon energy in the United States using Lotka–Volterra models," Energy, Elsevier, vol. 100(C), pages 416-424.
    2. Jānis Krūmiņš & Māris Kļaviņš, 2023. "Investigating the Potential of Nuclear Energy in Achieving a Carbon-Free Energy Future," Energies, MDPI, vol. 16(9), pages 1-31, April.
    3. Ivan Faiella & Luciano Lavecchia, 2012. "Costs and benefits of relaunching nuclear energy in Italy," Questioni di Economia e Finanza (Occasional Papers) 114, Bank of Italy, Economic Research and International Relations Area.
    4. Bi-Huei Tsai & Yao-Min Huang, 2023. "Comparing the Substitution of Nuclear Energy or Renewable Energy for Fossil Fuels between the United States and Africa," Sustainability, MDPI, vol. 15(13), pages 1-16, June.
    5. Valentine, Scott, 2010. "Braking wind in Australia: A critical evaluation of the renewable energy target," Energy Policy, Elsevier, vol. 38(7), pages 3668-3675, July.
    6. World Bank, 2012. "Air Transport and Energy Efficiency," World Bank Publications - Reports 16805, The World Bank Group.
    7. Halliki Kreinin, 2021. "The divergent narratives and strategies of unions in times of social-ecological crises: fracking and the UK energy sector," Transfer: European Review of Labour and Research, , vol. 27(4), pages 453-468, November.
    8. Alkan, Ömer & Albayrak, Özlem Karadağ, 2020. "Ranking of renewable energy sources for regions in Turkey by fuzzy entropy based fuzzy COPRAS and fuzzy MULTIMOORA," Renewable Energy, Elsevier, vol. 162(C), pages 712-726.
    9. Linares, Pedro & Conchado, Adela, 2013. "The economics of new nuclear power plants in liberalized electricity markets," Energy Economics, Elsevier, vol. 40(S1), pages 119-125.
    10. Treyer, Karin & Bauer, Christian & Simons, Andrew, 2014. "Human health impacts in the life cycle of future European electricity generation," Energy Policy, Elsevier, vol. 74(S1), pages 31-44.
    11. Shoeibi, Shahin & Rahbar, Nader & Esfahlani, Ahad Abedini & Kargarsharifabad, Hadi, 2021. "Energy matrices, exergoeconomic and enviroeconomic analysis of air-cooled and water-cooled solar still: Experimental investigation and numerical simulation," Renewable Energy, Elsevier, vol. 171(C), pages 227-244.
    12. Saadon, Syamimi & Gaillard, Leon & Menezo, Christophe & Giroux-Julien, Stéphanie, 2020. "Exergy, exergoeconomic and enviroeconomic analysis of a building integrated semi-transparent photovoltaic/thermal (BISTPV/T) by natural ventilation," Renewable Energy, Elsevier, vol. 150(C), pages 981-989.
    13. Alshammari, Yousef M. & Sarathy, S. Mani, 2017. "Achieving 80% greenhouse gas reduction target in Saudi Arabia under low and medium oil prices," Energy Policy, Elsevier, vol. 101(C), pages 502-511.
    14. Sigit Perdana & Rod Tyers, 2020. "Global Climate Change Mitigation: Strategic Incentives," The Energy Journal, , vol. 41(3), pages 183-206, May.
    15. Kaczmarczyk, Michał & Mukti, Mentari & Ghaffour, Noreddine & Soukane, Sofiane & Bundschuh, Jochen & Tomaszewska, Barbara, 2024. "Renewable energy-driven membrane distillation in the context of life cycle assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    16. Ananthakrishnan, K. & Bijarniya, Jay Prakash & Sarkar, Jahar, 2021. "Energy, exergy, economic and ecological analyses of a diurnal radiative water cooler," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    17. Turconi, Roberto & Boldrin, Alessio & Astrup, Thomas, 2013. "Life cycle assessment (LCA) of electricity generation technologies: Overview, comparability and limitations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 555-565.
    18. Djanibekov, Utkur & Gaur, Varun, 2018. "Nexus of energy use, agricultural production, employment and incomes among rural households in Uttar Pradesh, India," Energy Policy, Elsevier, vol. 113(C), pages 439-453.
    19. Gilbert, Alexander Q. & Sovacool, Benjamin K., 2018. "Carbon pathways in the global gas market: An attributional lifecycle assessment of the climate impacts of liquefied natural gas exports from the United States to Asia," Energy Policy, Elsevier, vol. 120(C), pages 635-643.
    20. Torkfar, Arman & Arefian, Amir & Hosseini-Abardeh, Reza & Bahrami, Mohsen, 2023. "Implementation of active and passive control strategies for power generation in a solar chimney power plant: A technical evaluation of Manzanares prototype," Renewable Energy, Elsevier, vol. 216(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:294:y:2024:i:c:s0360544224006236. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.