IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i18p5725-d633448.html
   My bibliography  Save this article

Hydraulic Fracturing in Enhanced Geothermal Systems—Field, Tectonic and Rock Mechanics Conditions—A Review

Author

Listed:
  • Rafał Moska

    (Oil and Gas Institute—National Research Institute, 25A Lubicz Str., 31-503 Krakow, Poland)

  • Krzysztof Labus

    (Faculty of Mining, Safety Engineering and Industrial Automation, Silesian University of Technology, 2 Akademicka Str., 44-100 Gliwice, Poland)

  • Piotr Kasza

    (Oil and Gas Institute—National Research Institute, 25A Lubicz Str., 31-503 Krakow, Poland)

Abstract

Hydraulic fracturing (HF) is a well-known stimulation method used to increase production from conventional and unconventional hydrocarbon reservoirs. In recent years, HF has been widely used in Enhanced Geothermal Systems (EGS). HF in EGS is used to create a geothermal collector in impermeable or poor-permeable hot rocks (HDR) at a depth formation. Artificially created fracture network in the collector allows for force the flow of technological fluid in a loop between at least two wells (injector and producer). Fluid heats up in the collector, then is pumped to the surface. Thermal energy is used to drive turbines generating electricity. This paper is a compilation of selected data from 10 major world’s EGS projects and provides an overview of the basic elements needed to design HF. Authors were focused on two types of data: geological, i.e., stratigraphy, lithology, target zone deposition depth and temperature; geophysical, i.e., the tectonic regime at the site, magnitudes of the principal stresses, elastic parameters of rocks and the seismic velocities. For each of the EGS areas, the scope of work related to HF processes was briefly presented. The most important HF parameters are cited, i.e., fracturing pressure, pumping rate and used fracking fluids and proppants. In a few cases, the dimensions of the modeled or created hydraulic fractures are also provided. Additionally, the current state of the conceptual work of EGS projects in Poland is also briefly presented.

Suggested Citation

  • Rafał Moska & Krzysztof Labus & Piotr Kasza, 2021. "Hydraulic Fracturing in Enhanced Geothermal Systems—Field, Tectonic and Rock Mechanics Conditions—A Review," Energies, MDPI, vol. 14(18), pages 1-24, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5725-:d:633448
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/18/5725/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/18/5725/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lu, Shyi-Min, 2018. "A global review of enhanced geothermal system (EGS)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2902-2921.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohsen Fallah Vostakola & Babak Salamatinia & Bahman Amini Horri, 2022. "A Review on Recent Progress in the Integrated Green Hydrogen Production Processes," Energies, MDPI, vol. 15(3), pages 1-41, February.
    2. Bo Hu & Xiangqi Hu & Chenggeng Lin & Guangzhen Du & Tianxing Ma & Kaihui Li, 2023. "Evolution of Physical and Mechanical Properties of Granite after Thermal Treatment under Cyclic Uniaxial Compression," Sustainability, MDPI, vol. 15(18), pages 1-22, September.
    3. Rafał Moska & Krzysztof Labus & Piotr Kasza & Agnieszka Moska, 2023. "Geothermal Potential of Hot Dry Rock in South-East Baltic Basin Countries—A Review," Energies, MDPI, vol. 16(4), pages 1-18, February.
    4. Diego Paltrinieri & Paolo Favali & Francesco Italiano & Patrizio Signanini & Carlo Caso & Fabrizio B. Armani, 2022. "The Marsili Seamount Offshore Geothermal Reservoir: A Big Challenge for an Energy Transition Model," Energies, MDPI, vol. 15(5), pages 1-16, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tomasz Sliwa & Aneta Sapińska-Śliwa & Andrzej Gonet & Tomasz Kowalski & Anna Sojczyńska, 2021. "Geothermal Boreholes in Poland—Overview of the Current State of Knowledge," Energies, MDPI, vol. 14(11), pages 1-21, June.
    2. Jizhe Guo & Zengchao Feng & Xuecheng Li, 2023. "Shear Strength and Energy Evolution of Granite under Real-Time Temperature," Sustainability, MDPI, vol. 15(11), pages 1-18, May.
    3. Chen, Cihai & Deng, Yaping & Ma, Haichun & Kang, Xueyuan & Ma, Lei & Qian, Jiazhong, 2024. "Deep learning-based inversion framework by assimilating hydrogeological and geophysical data for an enhanced geothermal system characterization and thermal performance prediction," Energy, Elsevier, vol. 302(C).
    4. Wentao Zhao & Yilong Yuan & Tieya Jing & Chenghao Zhong & Shoucheng Wei & Yulong Yin & Deyuan Zhao & Haowei Yuan & Jin Zheng & Shaomin Wang, 2023. "Heat Production Performance from an Enhanced Geothermal System (EGS) Using CO 2 as the Working Fluid," Energies, MDPI, vol. 16(20), pages 1-16, October.
    5. Wang, Gaosheng & Song, Xianzhi & Shi, Yu & Yang, Ruiyue & Yulong, Feixue & Zheng, Rui & Li, Jiacheng, 2021. "Heat extraction analysis of a novel multilateral-well coaxial closed-loop geothermal system," Renewable Energy, Elsevier, vol. 163(C), pages 974-986.
    6. Hu, Xincheng & Banks, Jonathan & Guo, Yunting & Liu, Wei Victor, 2022. "Utilizing geothermal energy from enhanced geothermal systems as a heat source for oil sands separation: A numerical evaluation," Energy, Elsevier, vol. 238(PA).
    7. Linkai Li & Xiao Guo & Ming Zhou & Gang Xiang & Ning Zhang & Yue Wang & Shengyuan Wang & Arnold Landjobo Pagou, 2021. "The Investigation of Fracture Networks on Heat Extraction Performance for an Enhanced Geothermal System," Energies, MDPI, vol. 14(6), pages 1-18, March.
    8. Zhang, Bo & Guo, Tiankui & Qu, Zhanqing & Wang, Jiwei & Chen, Ming & Liu, Xiaoqiang, 2023. "Numerical simulation of fracture propagation and production performance in a fractured geothermal reservoir using a 2D FEM-based THMD coupling model," Energy, Elsevier, vol. 273(C).
    9. Tianyu Lu & Hongyu Li, 2024. "Can China’s Regional Industrial Chain Innovation and Reform Policy Make the Impossible Triangle of Energy Attainable? A Causal Inference Study on the Effect of Improving Industrial Chain Resilience," Energies, MDPI, vol. 17(10), pages 1-33, May.
    10. Liao, Jianxing & Hu, Ke & Mehmood, Faisal & Xu, Bin & Teng, Yuhang & Wang, Hong & Hou, Zhengmeng & Xie, Yachen, 2023. "Embedded discrete fracture network method for numerical estimation of long-term performance of CO2-EGS under THM coupled framework," Energy, Elsevier, vol. 285(C).
    11. Zhao, Peng & Liu, Jun & Elsworth, Derek, 2023. "Numerical study on a multifracture enhanced geothermal system considering matrix permeability enhancement induced by thermal unloading," Renewable Energy, Elsevier, vol. 203(C), pages 33-44.
    12. Vonsée, Bram & Crijns-Graus, Wina & Liu, Wen, 2019. "Energy technology dependence - A value chain analysis of geothermal power in the EU," Energy, Elsevier, vol. 178(C), pages 419-435.
    13. Xie, Yingchun & Nie, Yutai & Li, Tailu & Zhang, Yao & Wang, Jingyi, 2023. "Flash evaporation strategy of organic Rankine cycle for geothermal power performance enhancement: A case study," Renewable Energy, Elsevier, vol. 212(C), pages 57-69.
    14. Knoblauch, Theresa A.K. & Trutnevyte, Evelina & Stauffacher, Michael, 2019. "Siting deep geothermal energy: Acceptance of various risk and benefit scenarios in a Swiss-German cross-national study," Energy Policy, Elsevier, vol. 128(C), pages 807-816.
    15. Hou, Xinglan & Zhong, Xiuping & Nie, Shuaishuai & Wang, Yafei & Tu, Guigang & Ma, Yingrui & Liu, Kunyan & Chen, Chen, 2024. "Study on the heat recovery behavior of horizontal well systems in the Qiabuqia geothermal area of the Gonghe Basin, China," Energy, Elsevier, vol. 286(C).
    16. Tao, Huayu & Qian, Xi & Zhou, Yi & Cheng, Hongfei, 2022. "Research progress of clay minerals in carbon dioxide capture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    17. Yu, Ruyang & Zhang, Kai & Ramasubramanian, Brindha & Jiang, Shu & Ramakrishna, Seeram & Tang, Yuhang, 2024. "Ensemble learning for predicting average thermal extraction load of a hydrothermal geothermal field: A case study in Guanzhong Basin, China," Energy, Elsevier, vol. 296(C).
    18. Liang Zhang & Songhe Geng & Jun Kang & Jiahao Chao & Linchao Yang & Fangping Yan, 2020. "Experimental Study on the Heat Exchange Mechanism in a Simulated Self-Circulation Wellbore," Energies, MDPI, vol. 13(11), pages 1-22, June.
    19. Wang, Yuqing & Liu, Yingxin & Dou, Jinyue & Li, Mingzhu & Zeng, Ming, 2020. "Geothermal energy in China: Status, challenges, and policy recommendations," Utilities Policy, Elsevier, vol. 64(C).
    20. Yuxiang Cheng & Yanjun Zhang, 2020. "Experimental Study of Fracture Propagation: The Application in Energy Mining," Energies, MDPI, vol. 13(6), pages 1-31, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5725-:d:633448. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.