IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v302y2024ics0360544224014865.html
   My bibliography  Save this article

Deep learning-based inversion framework by assimilating hydrogeological and geophysical data for an enhanced geothermal system characterization and thermal performance prediction

Author

Listed:
  • Chen, Cihai
  • Deng, Yaping
  • Ma, Haichun
  • Kang, Xueyuan
  • Ma, Lei
  • Qian, Jiazhong

Abstract

Enhanced geothermal systems (EGS), which are developed by creating artificial fractures to enhance the permeability of deep reservoir, show their its advantage in power generation. However, due to the limited wells in deep depth, characterizing fractured geothermal reservoirs with sparse data is difficult and poses challenges for long-term thermal performance prediction. Interpreting observation data through inversion to characterize the fracture aperture and predict EGS long-term thermal performance is a hopeful scheme. Thus, a joint inversion framework, convolutional variational autoencoder-ensemble smoother with multiple data assimilation (CVAE-ESMDA), is proposed with the following aspects: (i) CVAE is trained to parameterize the high-dimensional Non-Gaussian aperture field, (ii) ESMDA is applied to integrate hydrogeological and geophysical data for aperture characterization. Based on the inversion results, the long-term performance is predicted. The normalized root mean square errors (NRMSEs) of inversion results decrease from 27.66 % to 24.52 % after multi-type data are integrated for CVAE-ESMDA. Furthermore, the NRMSEs of long-term thermal prediction of two production wells also decrease to only 2.3 % and 8.2 %. To further exhibit the advantages of CVAE-ESMDA, another joint inversion framework, principal component analysis (PCA)-ESMDA, is also compared. However, PCA is limited in addressing Non-Gaussian aperture field and its long-term thermal prediction performance is unsatisfactory.

Suggested Citation

  • Chen, Cihai & Deng, Yaping & Ma, Haichun & Kang, Xueyuan & Ma, Lei & Qian, Jiazhong, 2024. "Deep learning-based inversion framework by assimilating hydrogeological and geophysical data for an enhanced geothermal system characterization and thermal performance prediction," Energy, Elsevier, vol. 302(C).
  • Handle: RePEc:eee:energy:v:302:y:2024:i:c:s0360544224014865
    DOI: 10.1016/j.energy.2024.131713
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224014865
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131713?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Tianfu & Yuan, Yilong & Jia, Xiaofeng & Lei, Yude & Li, Shengtao & Feng, Bo & Hou, Zhaoyun & Jiang, Zhenjiao, 2018. "Prospects of power generation from an enhanced geothermal system by water circulation through two horizontal wells: A case study in the Gonghe Basin, Qinghai Province, China," Energy, Elsevier, vol. 148(C), pages 196-207.
    2. Lu, Shyi-Min, 2018. "A global review of enhanced geothermal system (EGS)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2902-2921.
    3. Song, Guofeng & Song, Xianzhi & Ji, Jiayan & Wu, Xiaoguang & Li, Gensheng & Xu, Fuqiang & Shi, Yu & Wang, Gaosheng, 2022. "Evolution of fracture aperture and thermal productivity influenced by chemical reaction in enhanced geothermal system," Renewable Energy, Elsevier, vol. 186(C), pages 126-142.
    4. Olasolo, P. & Juárez, M.C. & Morales, M.P. & Olasolo, A. & Agius, M.R., 2018. "Analysis of working fluids applicable in Enhanced Geothermal Systems: Nitrous oxide as an alternative working fluid," Energy, Elsevier, vol. 157(C), pages 150-161.
    5. Xu, Tianfu & Liang, Xu & Xia, Yi & Jiang, Zhenjiao & Gherardi, Fabrizio, 2022. "Performance evaluation of the Habanero enhanced geothermal system, Australia: Optimization based on tracer and induced micro-seismicity data," Renewable Energy, Elsevier, vol. 181(C), pages 1197-1208.
    6. Wang, Ling & Jiang, Zhenjiao & Li, Chengying, 2023. "Comparative study on effects of macroscopic and microscopic fracture structures on the performance of enhanced geothermal systems," Energy, Elsevier, vol. 274(C).
    7. Slatlem Vik, Hedda & Salimzadeh, Saeed & Nick, Hamidreza M., 2018. "Heat recovery from multiple-fracture enhanced geothermal systems: The effect of thermoelastic fracture interactions," Renewable Energy, Elsevier, vol. 121(C), pages 606-622.
    8. Shi, Yu & Song, Xianzhi & Wang, Gaosheng & McLennan, John & Forbes, Bryan & Li, Xiaojiang & Li, Jiacheng, 2019. "Study on wellbore fluid flow and heat transfer of a multilateral-well CO2 enhanced geothermal system," Applied Energy, Elsevier, vol. 249(C), pages 14-27.
    9. Song, Xianzhi & Shi, Yu & Li, Gensheng & Yang, Ruiyue & Wang, Gaosheng & Zheng, Rui & Li, Jiacheng & Lyu, Zehao, 2018. "Numerical simulation of heat extraction performance in enhanced geothermal system with multilateral wells," Applied Energy, Elsevier, vol. 218(C), pages 325-337.
    10. Chen, Guodong & Luo, Xin & Jiao, Jiu Jimmy & Jiang, Chuanyin, 2023. "Fracture network characterization with deep generative model based stochastic inversion," Energy, Elsevier, vol. 273(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Jiansong & Liu, Yongsheng & Lv, Jianguo & Gao, Wenlong, 2024. "The flow and heat transfer characteristics of supercritical mixed-phase CO2 and N2 in a 3D self-affine rough fracture," Energy, Elsevier, vol. 303(C).
    2. Ma, Yuanyuan & Li, Shibin & Zhang, Ligang & Liu, Songze & Liu, Zhaoyi & Li, Hao & Shi, Erxiu & Liu, Xuemei & Liu, Hongliang, 2020. "Analysis on the heat extraction performance of multi-well injection enhanced geothermal system based on leaf-like bifurcated fracture networks," Energy, Elsevier, vol. 213(C).
    3. Qiao, Mingzheng & Jing, Zefeng & Feng, Chenchen & Li, Minghui & Chen, Cheng & Zou, Xupeng & Zhou, Yujuan, 2024. "Review on heat extraction systems of hot dry rock: Classifications, benefits, limitations, research status and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
    4. Song, Guofeng & Song, Xianzhi & Ji, Jiayan & Wu, Xiaoguang & Li, Gensheng & Xu, Fuqiang & Shi, Yu & Wang, Gaosheng, 2022. "Evolution of fracture aperture and thermal productivity influenced by chemical reaction in enhanced geothermal system," Renewable Energy, Elsevier, vol. 186(C), pages 126-142.
    5. Wang, Ling & Jiang, Zhenjiao & Li, Chengying, 2023. "Comparative study on effects of macroscopic and microscopic fracture structures on the performance of enhanced geothermal systems," Energy, Elsevier, vol. 274(C).
    6. Tomasz Sliwa & Aneta Sapińska-Śliwa & Andrzej Gonet & Tomasz Kowalski & Anna Sojczyńska, 2021. "Geothermal Boreholes in Poland—Overview of the Current State of Knowledge," Energies, MDPI, vol. 14(11), pages 1-21, June.
    7. Wang, Gaosheng & Song, Xianzhi & Shi, Yu & Yang, Ruiyue & Yulong, Feixue & Zheng, Rui & Li, Jiacheng, 2021. "Heat extraction analysis of a novel multilateral-well coaxial closed-loop geothermal system," Renewable Energy, Elsevier, vol. 163(C), pages 974-986.
    8. Ma, Yuanyuan & Li, Shibin & Zhang, Ligang & Liu, Songze & Liu, Zhaoyi & Li, Hao & Shi, Erxiu, 2020. "Study on the effect of well layout schemes and fracture parameters on the heat extraction performance of enhanced geothermal system in fractured reservoir," Energy, Elsevier, vol. 202(C).
    9. Ma, Yuanyuan & Li, Shibin & Zhang, Ligang & Liu, Songze & Liu, Zhaoyi & Li, Hao & Shi, Erxiu & Zhang, Haijun, 2020. "Numerical simulation study on the heat extraction performance of multi-well injection enhanced geothermal system," Renewable Energy, Elsevier, vol. 151(C), pages 782-795.
    10. Meng, Nan & Gao, Xiang & Wang, Zeyu & Li, Tailu, 2024. "Numerical investigation and optimization on dynamic power generation performance of enhanced geothermal system," Energy, Elsevier, vol. 288(C).
    11. Li, Shijie & Liu, Jie & Huang, Wanying & Zhang, Chenghang, 2024. "Numerical simulation of the thermo-hydro-chemical coupling in enhanced geothermal systems: Impact of SiO2 dissolution/precipitation in matrix and fractures," Energy, Elsevier, vol. 290(C).
    12. Ji, Jiayan & Song, Xianzhi & Song, Guofeng & Xu, Fuqiang & Shi, Yu & Lv, Zehao & Li, Shuang & Yi, Junlin, 2023. "Study on fracture evolution model of the enhanced geothermal system under thermal-hydraulic-chemical-deformation coupling," Energy, Elsevier, vol. 269(C).
    13. Ji, Jiayan & Song, Xianzhi & Li, Shuang & Xu, Fuqiang & Song, Guofeng & Shi, Yu & Yi, Junlin, 2023. "Study on the effect of fracture morphology on fracture deformation based on the thermal-hydraulic-chemical-deformation coupling model," Energy, Elsevier, vol. 282(C).
    14. Yu Wang & Tianfu Xu & Yuxiang Cheng & Guanhong Feng, 2022. "Prospects for Power Generation of the Doublet Supercritical Geothermal System in Reykjanes Geothermal Field, Iceland," Energies, MDPI, vol. 15(22), pages 1-15, November.
    15. Hu, Xincheng & Banks, Jonathan & Guo, Yunting & Liu, Wei Victor, 2022. "Utilizing geothermal energy from enhanced geothermal systems as a heat source for oil sands separation: A numerical evaluation," Energy, Elsevier, vol. 238(PA).
    16. Linkai Li & Xiao Guo & Ming Zhou & Gang Xiang & Ning Zhang & Yue Wang & Shengyuan Wang & Arnold Landjobo Pagou, 2021. "The Investigation of Fracture Networks on Heat Extraction Performance for an Enhanced Geothermal System," Energies, MDPI, vol. 14(6), pages 1-18, March.
    17. Tianyu Lu & Hongyu Li, 2024. "Can China’s Regional Industrial Chain Innovation and Reform Policy Make the Impossible Triangle of Energy Attainable? A Causal Inference Study on the Effect of Improving Industrial Chain Resilience," Energies, MDPI, vol. 17(10), pages 1-33, May.
    18. Liao, Jianxing & Hu, Ke & Mehmood, Faisal & Xu, Bin & Teng, Yuhang & Wang, Hong & Hou, Zhengmeng & Xie, Yachen, 2023. "Embedded discrete fracture network method for numerical estimation of long-term performance of CO2-EGS under THM coupled framework," Energy, Elsevier, vol. 285(C).
    19. Zhao, Peng & Liu, Jun & Elsworth, Derek, 2023. "Numerical study on a multifracture enhanced geothermal system considering matrix permeability enhancement induced by thermal unloading," Renewable Energy, Elsevier, vol. 203(C), pages 33-44.
    20. Song, Xianzhi & Zhang, Chengkai & Shi, Yu & Li, Gensheng, 2019. "Production performance of oil shale in-situ conversion with multilateral wells," Energy, Elsevier, vol. 189(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:302:y:2024:i:c:s0360544224014865. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.