IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i20p7202-d1265114.html
   My bibliography  Save this article

Heat Production Performance from an Enhanced Geothermal System (EGS) Using CO 2 as the Working Fluid

Author

Listed:
  • Wentao Zhao

    (National Key Laboratory of High-Efficiency Flexible Coal Power Generation and Carbon Capture Utilization and Storage, Beijing 102209, China
    China Huaneng Clean Energy Research Institute, Beijing 102209, China)

  • Yilong Yuan

    (Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun 130021, China)

  • Tieya Jing

    (National Key Laboratory of High-Efficiency Flexible Coal Power Generation and Carbon Capture Utilization and Storage, Beijing 102209, China
    China Huaneng Clean Energy Research Institute, Beijing 102209, China)

  • Chenghao Zhong

    (Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun 130021, China)

  • Shoucheng Wei

    (Fujian Branch of China Huaneng Group, Fuzhou 350000, China)

  • Yulong Yin

    (National Key Laboratory of High-Efficiency Flexible Coal Power Generation and Carbon Capture Utilization and Storage, Beijing 102209, China
    China Huaneng Clean Energy Research Institute, Beijing 102209, China)

  • Deyuan Zhao

    (Fujian Branch of China Huaneng Group, Fuzhou 350000, China)

  • Haowei Yuan

    (National Key Laboratory of High-Efficiency Flexible Coal Power Generation and Carbon Capture Utilization and Storage, Beijing 102209, China
    China Huaneng Clean Energy Research Institute, Beijing 102209, China)

  • Jin Zheng

    (Fujian Branch of China Huaneng Group, Fuzhou 350000, China)

  • Shaomin Wang

    (Fujian Branch of China Huaneng Group, Fuzhou 350000, China)

Abstract

CO 2 -based enhanced geothermal systems (CO 2 -EGS) are greatly attractive in geothermal energy production due to their high flow rates and the additional benefit of CO 2 geological storage. In this work, a CO 2 -EGS model is built based on the available geological data in the Gonghe Basin, Northwest China. In our model, the wellbore flow is considered and coupled with a geothermal reservoir to better simulate the complex CO 2 flow and heat production behavior. Based on the fractured geothermal reservoir at depths between 2900 m and 3300 m, the long-term (30-year) heat production performance is predicted using CO 2 as the working fluid with fixed wellhead pressure. The results indicate that the proposed CO 2 -EGS will obtain an ascending heat extraction rate in the first 9 years, followed by a slight decrease in the following 21 years. Due to the significant natural convection of CO 2 (e.g., low viscosity and density) in the geothermal reservoir, the mass production rate of the CO 2 -EGS will reach 150 kg/s. The heat extraction rates will be greater than 32 MW throughout the 30-year production period, showing a significant production performance. However, the Joule–Thomson effect in the wellbore will result in a drastic decrease in production temperature (e.g., a 62.6 °C decrease in the production well). This means that the pre-optimization analyses and physical material treatments are required during geothermal production using CO 2 as the working fluid.

Suggested Citation

  • Wentao Zhao & Yilong Yuan & Tieya Jing & Chenghao Zhong & Shoucheng Wei & Yulong Yin & Deyuan Zhao & Haowei Yuan & Jin Zheng & Shaomin Wang, 2023. "Heat Production Performance from an Enhanced Geothermal System (EGS) Using CO 2 as the Working Fluid," Energies, MDPI, vol. 16(20), pages 1-16, October.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:20:p:7202-:d:1265114
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/20/7202/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/20/7202/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lu, Shyi-Min, 2018. "A global review of enhanced geothermal system (EGS)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2902-2921.
    2. Singh, Mrityunjay & Mahmoodpour, Saeed & Ershadnia, Reza & Soltanian, Mohamad Reza & Sass, Ingo, 2023. "Comparative study on heat extraction from Soultz-sous-Forêts geothermal field using supercritical carbon dioxide and water as the working fluid," Energy, Elsevier, vol. 266(C).
    3. Liu, Gang & Zhou, Chunwei & Rao, Zhenghua & Liao, Shengming, 2021. "Impacts of fracture network geometries on numerical simulation and performance prediction of enhanced geothermal systems," Renewable Energy, Elsevier, vol. 171(C), pages 492-504.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xue, Zhenqian & Zhang, Kai & Zhang, Chi & Ma, Haoming & Chen, Zhangxin, 2023. "Comparative data-driven enhanced geothermal systems forecasting models: A case study of Qiabuqia field in China," Energy, Elsevier, vol. 280(C).
    2. Qiao, Mingzheng & Jing, Zefeng & Feng, Chenchen & Li, Minghui & Chen, Cheng & Zou, Xupeng & Zhou, Yujuan, 2024. "Review on heat extraction systems of hot dry rock: Classifications, benefits, limitations, research status and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
    3. Xue, Zhenqian & Ma, Haoming & Wei, Yizheng & Wu, Wei & Sun, Zhe & Chai, Maojie & Zhang, Chi & Chen, Zhangxin, 2024. "Integrated technological and economic feasibility comparisons of enhanced geothermal systems associated with carbon storage," Applied Energy, Elsevier, vol. 359(C).
    4. Zhou, Chunwei & Liu, Gang & Liao, Shengming, 2024. "Probing fractured reservoir of enhanced geothermal systems with fuzzy-genetic inversion model: Impacts of geothermal reservoir environment," Energy, Elsevier, vol. 290(C).
    5. Tomasz Sliwa & Aneta Sapińska-Śliwa & Andrzej Gonet & Tomasz Kowalski & Anna Sojczyńska, 2021. "Geothermal Boreholes in Poland—Overview of the Current State of Knowledge," Energies, MDPI, vol. 14(11), pages 1-21, June.
    6. Jizhe Guo & Zengchao Feng & Xuecheng Li, 2023. "Shear Strength and Energy Evolution of Granite under Real-Time Temperature," Sustainability, MDPI, vol. 15(11), pages 1-18, May.
    7. Chen, Cihai & Deng, Yaping & Ma, Haichun & Kang, Xueyuan & Ma, Lei & Qian, Jiazhong, 2024. "Deep learning-based inversion framework by assimilating hydrogeological and geophysical data for an enhanced geothermal system characterization and thermal performance prediction," Energy, Elsevier, vol. 302(C).
    8. Aliyu, Musa D. & Archer, Rosalind A., 2021. "A thermo-hydro-mechanical model of a hot dry rock geothermal reservoir," Renewable Energy, Elsevier, vol. 176(C), pages 475-493.
    9. Wang, Gaosheng & Song, Xianzhi & Shi, Yu & Yang, Ruiyue & Yulong, Feixue & Zheng, Rui & Li, Jiacheng, 2021. "Heat extraction analysis of a novel multilateral-well coaxial closed-loop geothermal system," Renewable Energy, Elsevier, vol. 163(C), pages 974-986.
    10. Hu, Xincheng & Banks, Jonathan & Guo, Yunting & Liu, Wei Victor, 2022. "Utilizing geothermal energy from enhanced geothermal systems as a heat source for oil sands separation: A numerical evaluation," Energy, Elsevier, vol. 238(PA).
    11. Linkai Li & Xiao Guo & Ming Zhou & Gang Xiang & Ning Zhang & Yue Wang & Shengyuan Wang & Arnold Landjobo Pagou, 2021. "The Investigation of Fracture Networks on Heat Extraction Performance for an Enhanced Geothermal System," Energies, MDPI, vol. 14(6), pages 1-18, March.
    12. Wang, Song & Zhou, Jian & Zhang, Luqing & Han, Zhenhua & Kong, Yanlong, 2024. "Numerical insight into hydraulic fracture propagation in hot dry rock with complex natural fracture networks via fluid-solid coupling grain-based modeling," Energy, Elsevier, vol. 295(C).
    13. Zhang, Bo & Guo, Tiankui & Qu, Zhanqing & Wang, Jiwei & Chen, Ming & Liu, Xiaoqiang, 2023. "Numerical simulation of fracture propagation and production performance in a fractured geothermal reservoir using a 2D FEM-based THMD coupling model," Energy, Elsevier, vol. 273(C).
    14. Tianyu Lu & Hongyu Li, 2024. "Can China’s Regional Industrial Chain Innovation and Reform Policy Make the Impossible Triangle of Energy Attainable? A Causal Inference Study on the Effect of Improving Industrial Chain Resilience," Energies, MDPI, vol. 17(10), pages 1-33, May.
    15. Liao, Jianxing & Hu, Ke & Mehmood, Faisal & Xu, Bin & Teng, Yuhang & Wang, Hong & Hou, Zhengmeng & Xie, Yachen, 2023. "Embedded discrete fracture network method for numerical estimation of long-term performance of CO2-EGS under THM coupled framework," Energy, Elsevier, vol. 285(C).
    16. Zhao, Peng & Liu, Jun & Elsworth, Derek, 2023. "Numerical study on a multifracture enhanced geothermal system considering matrix permeability enhancement induced by thermal unloading," Renewable Energy, Elsevier, vol. 203(C), pages 33-44.
    17. Vonsée, Bram & Crijns-Graus, Wina & Liu, Wen, 2019. "Energy technology dependence - A value chain analysis of geothermal power in the EU," Energy, Elsevier, vol. 178(C), pages 419-435.
    18. Xie, Yingchun & Nie, Yutai & Li, Tailu & Zhang, Yao & Wang, Jingyi, 2023. "Flash evaporation strategy of organic Rankine cycle for geothermal power performance enhancement: A case study," Renewable Energy, Elsevier, vol. 212(C), pages 57-69.
    19. Knoblauch, Theresa A.K. & Trutnevyte, Evelina & Stauffacher, Michael, 2019. "Siting deep geothermal energy: Acceptance of various risk and benefit scenarios in a Swiss-German cross-national study," Energy Policy, Elsevier, vol. 128(C), pages 807-816.
    20. Hou, Xinglan & Zhong, Xiuping & Nie, Shuaishuai & Wang, Yafei & Tu, Guigang & Ma, Yingrui & Liu, Kunyan & Chen, Chen, 2024. "Study on the heat recovery behavior of horizontal well systems in the Qiabuqia geothermal area of the Gonghe Basin, China," Energy, Elsevier, vol. 286(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:20:p:7202-:d:1265114. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.