Baseline Energy Use Modeling and Characterization in Tertiary Buildings Using an Interpretable Bayesian Linear Regression Methodology
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- David M. Blei & Alp Kucukelbir & Jon D. McAuliffe, 2017. "Variational Inference: A Review for Statisticians," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 859-877, April.
- Sergio Pezzulli & Patrizio Frederic & Shanti Majithia & Sal Sabbagh & Emily Black & Rowan Sutton & David Stephenson, 2006. "The seasonal forecast of electricity demand: a hierarchical Bayesian model with climatological weather generator," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 22(2), pages 113-125, March.
- Herman Carstens & Xiaohua Xia & Sarma Yadavalli, 2018. "Bayesian Energy Measurement and Verification Analysis," Energies, MDPI, vol. 11(2), pages 1-20, February.
- Grillone, Benedetto & Mor, Gerard & Danov, Stoyan & Cipriano, Jordi & Sumper, Andreas, 2021. "A data-driven methodology for enhanced measurement and verification of energy efficiency savings in commercial buildings," Applied Energy, Elsevier, vol. 301(C).
- Walter, Travis & Price, Phillip N. & Sohn, Michael D., 2014. "Uncertainty estimation improves energy measurement and verification procedures," Applied Energy, Elsevier, vol. 130(C), pages 230-236.
- Karatzoglou, Alexandros & Smola, Alexandros & Hornik, Kurt & Zeileis, Achim, 2004. "kernlab - An S4 Package for Kernel Methods in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 11(i09).
- Wang, Siyan & Sun, Xun & Lall, Upmanu, 2017. "A hierarchical Bayesian regression model for predicting summer residential electricity demand across the U.S.A," Energy, Elsevier, vol. 140(P1), pages 601-611.
- Grillone, Benedetto & Danov, Stoyan & Sumper, Andreas & Cipriano, Jordi & Mor, Gerard, 2020. "A review of deterministic and data-driven methods to quantify energy efficiency savings and to predict retrofitting scenarios in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Abdurahman Alrobaie & Moncef Krarti, 2022. "A Review of Data-Driven Approaches for Measurement and Verification Analysis of Building Energy Retrofits," Energies, MDPI, vol. 15(21), pages 1-30, October.
- Martin, Gael M. & Frazier, David T. & Maneesoonthorn, Worapree & Loaiza-Maya, Rubén & Huber, Florian & Koop, Gary & Maheu, John & Nibbering, Didier & Panagiotelis, Anastasios, 2024.
"Bayesian forecasting in economics and finance: A modern review,"
International Journal of Forecasting, Elsevier, vol. 40(2), pages 811-839.
- Gael M. Martin & David T. Frazier & Worapree Maneesoonthorn & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2022. "Bayesian Forecasting in Economics and Finance: A Modern Review," Papers 2212.03471, arXiv.org, revised Jul 2023.
- Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Martin, Gael M. & Frazier, David T. & Maneesoonthorn, Worapree & Loaiza-Maya, Rubén & Huber, Florian & Koop, Gary & Maheu, John & Nibbering, Didier & Panagiotelis, Anastasios, 2024.
"Bayesian forecasting in economics and finance: A modern review,"
International Journal of Forecasting, Elsevier, vol. 40(2), pages 811-839.
- Gael M. Martin & David T. Frazier & Worapree Maneesoonthorn & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2022. "Bayesian Forecasting in Economics and Finance: A Modern Review," Papers 2212.03471, arXiv.org, revised Jul 2023.
- Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.
- Fonseca, Jimeno A. & Nevat, Ido & Peters, Gareth W., 2020. "Quantifying the uncertain effects of climate change on building energy consumption across the United States," Applied Energy, Elsevier, vol. 277(C).
- Tzani, Dimitra & Stavrakas, Vassilis & Santini, Marion & Thomas, Samuel & Rosenow, Jan & Flamos, Alexandros, 2022. "Pioneering a performance-based future for energy efficiency: Lessons learnt from a comparative review analysis of pay-for-performance programmes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
- Abdurahman Alrobaie & Moncef Krarti, 2022. "A Review of Data-Driven Approaches for Measurement and Verification Analysis of Building Energy Retrofits," Energies, MDPI, vol. 15(21), pages 1-30, October.
- Jacques Maritz & Foster Lubbe & Louis Lagrange, 2018. "A Practical Guide to Gaussian Process Regression for Energy Measurement and Verification within the Bayesian Framework," Energies, MDPI, vol. 11(4), pages 1-12, April.
- Simon Rouchier, 2022. "Bayesian Workflow and Hidden Markov Energy-Signature Model for Measurement and Verification," Energies, MDPI, vol. 15(10), pages 1-19, May.
- Mirfin, Anthony & Xiao, Xun & Jack, Michael W., 2024. "TOWST: A physics-informed statistical model for building energy consumption with solar gain," Applied Energy, Elsevier, vol. 369(C).
- Jing, Gang & Cai, Wenjian & Zhang, Xin & Cui, Can & Yin, Xiaohong & Xian, Huacai, 2019. "An energy-saving oriented air balancing strategy for multi-zone demand-controlled ventilation system," Energy, Elsevier, vol. 172(C), pages 1053-1065.
- Ünal, Berat Berkan & Onaygil, Sermin & Acuner, Ebru & Cin, Rabia, 2022. "Application of energy efficiency obligation scheme for electricity distribution companies in Turkey," Energy Policy, Elsevier, vol. 163(C).
- Tsukioka, Yasutomo & Yanagi, Junya & Takada, Teruko, 2018. "Investor sentiment extracted from internet stock message boards and IPO puzzles," International Review of Economics & Finance, Elsevier, vol. 56(C), pages 205-217.
- Daniel J. Luckett & Eric B. Laber & Samer S. El‐Kamary & Cheng Fan & Ravi Jhaveri & Charles M. Perou & Fatma M. Shebl & Michael R. Kosorok, 2021. "Receiver operating characteristic curves and confidence bands for support vector machines," Biometrics, The International Biometric Society, vol. 77(4), pages 1422-1430, December.
- Shen Liu & Hongyan Liu, 2021. "Tagging Items Automatically Based on Both Content Information and Browsing Behaviors," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 882-897, July.
- Grabisch, Michel & Kojadinovic, Ivan & Meyer, Patrick, 2008.
"A review of methods for capacity identification in Choquet integral based multi-attribute utility theory: Applications of the Kappalab R package,"
European Journal of Operational Research, Elsevier, vol. 186(2), pages 766-785, April.
- Michel Grabisch & Ivan Kojadinovic & Patrick Meyer, 2008. "A review of methods for capacity identification in Choquet integral based multi-attribute utility theory: Applications of the Kappalab R package," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00187175, HAL.
- Michel Grabisch & Ivan Kojadinovic & Patrick Meyer, 2008. "A review of methods for capacity identification in Choquet integral based multi-attribute utility theory: Applications of the Kappalab R package," Post-Print halshs-00187175, HAL.
- Loaiza-Maya, Rubén & Smith, Michael Stanley & Nott, David J. & Danaher, Peter J., 2022.
"Fast and accurate variational inference for models with many latent variables,"
Journal of Econometrics, Elsevier, vol. 230(2), pages 339-362.
- Rub'en Loaiza-Maya & Michael Stanley Smith & David J. Nott & Peter J. Danaher, 2020. "Fast and Accurate Variational Inference for Models with Many Latent Variables," Papers 2005.07430, arXiv.org, revised Apr 2021.
- Luo, Nanyu & Ji, Feng & Han, Yuting & He, Jinbo & Zhang, Xiaoya, 2024. "Fitting item response theory models using deep learning computational frameworks," OSF Preprints tjxab, Center for Open Science.
- Bellotti, Anthony & Brigo, Damiano & Gambetti, Paolo & Vrins, Frédéric, 2021.
"Forecasting recovery rates on non-performing loans with machine learning,"
International Journal of Forecasting, Elsevier, vol. 37(1), pages 428-444.
- Bellotti, Anthony & Brigo, Damiano & Gambetti, Paolo & Vrins, Frédéric, 2020. "Forecasting recovery rates on non-performing loans with machine learning," LIDAM Reprints LFIN 2020002, Université catholique de Louvain, Louvain Finance (LFIN).
- Bellotti, Anthony & Brigo, Damiano & Gambetti, Paolo & Vrins, Frédéric, 2020. "Forecasting recovery rates on non-performing loans with machine learning," LIDAM Discussion Papers LFIN 2020002, Université catholique de Louvain, Louvain Finance (LFIN).
- Xing Qin & Shuangge Ma & Mengyun Wu, 2023. "Two‐level Bayesian interaction analysis for survival data incorporating pathway information," Biometrics, The International Biometric Society, vol. 79(3), pages 1761-1774, September.
- Youngseon Lee & Seongil Jo & Jaeyong Lee, 2022. "A variational inference for the Lévy adaptive regression with multiple kernels," Computational Statistics, Springer, vol. 37(5), pages 2493-2515, November.
- Liu, Jie & Ye, Zifeng & Chen, Kun & Zhang, Panpan, 2024. "Variational Bayesian inference for bipartite mixed-membership stochastic block model with applications to collaborative filtering," Computational Statistics & Data Analysis, Elsevier, vol. 189(C).
More about this item
Keywords
Bayesian; baseline; energy; efficiency; probabilistic; uncertainty; buildings; savings;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5556-:d:629763. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.