IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i24p6474-d458509.html
   My bibliography  Save this article

Hydraulic Fracture Propagation in a Poro-Elastic Medium with Time-Dependent Injection Schedule Using the Time-Stepped Linear Superposition Method (TLSM)

Author

Listed:
  • Tri Pham

    (Harold Vance Department of Petroleum Engineering, Texas A&M University, College Station, TX 77843, USA)

  • Ruud Weijermars

    (Harold Vance Department of Petroleum Engineering, Texas A&M University, College Station, TX 77843, USA
    College of Petroleum Engineering and Geosciences, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia)

Abstract

The Time-Stepped Linear Superposition Method (TLSM) has been used previously to model and analyze the propagation of multiple competitive hydraulic fractures with constant internal pressure loads. This paper extends the TLSM methodology, by including a time-dependent injection schedule using pressure data from a typical diagnostic fracture injection test (DFIT). In addition, the effect of poro-elasticity in reservoir rocks is accounted for in the TLSM models presented here. The propagation of multiple hydraulic fractures using TLSM-based codes preserves infinite resolution by side-stepping grid refinement. First, the TLSM methodology is briefly outlined, together with the modifications required to account for variable time-dependent pressure and poro-elasticity in reservoir rock. Next, real world DFIT data are used in TLSM to model the propagation of multiple dynamic fractures and study the effect of time-dependent pressure and poro-elasticity on the development of hydraulic fracture networks. TLSM-based codes can quantify and visualize the effects of time-dependent pressure, and poro-elasticity can be effectively analyzed, using DFIT data, supported by dynamic visualizations of the changes in spatial stress concentrations during the fracture propagation process. The results from this study may help develop fracture treatment solutions with improved control of the fracture network created while avoiding the occurrence of fracture hits.

Suggested Citation

  • Tri Pham & Ruud Weijermars, 2020. "Hydraulic Fracture Propagation in a Poro-Elastic Medium with Time-Dependent Injection Schedule Using the Time-Stepped Linear Superposition Method (TLSM)," Energies, MDPI, vol. 13(24), pages 1-22, December.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:24:p:6474-:d:458509
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/24/6474/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/24/6474/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Weijermars, Ruud & Ettehad, Mahmood, 2019. "Displacement field potentials for deformation in elastic Media: Theory and application to pressure-loaded boreholes," Applied Mathematics and Computation, Elsevier, vol. 340(C), pages 276-295.
    2. Shahla Feizi Masouleh & Dharmendra Kumar & Ahmad Ghassemi, 2020. "Three-Dimensional Geomechanical Modeling and Analysis of Refracturing and “Frac-Hits” in Unconventional Reservoirs," Energies, MDPI, vol. 13(20), pages 1-35, October.
    3. Weijermars, Ruud & Pham, Tri & Ettehad, Mahmood, 2020. "Linear superposition method (LSM) for solving stress tensor fields and displacement vector fields: Application to multiple pressure-loaded circular holes in an elastic plate with far-field stress," Applied Mathematics and Computation, Elsevier, vol. 381(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dariusz Knez & Mohammad Ahmad Mahmoudi Zamani, 2021. "Empirical Formula for Dynamic Biot Coefficient of Sandstone Samples from South-West of Poland," Energies, MDPI, vol. 14(17), pages 1-17, September.
    2. Mohammad Ahmad Mahmoudi Zamani & Dariusz Knez, 2021. "A New Mechanical-Hydrodynamic Safety Factor Index for Sand Production Prediction," Energies, MDPI, vol. 14(11), pages 1-14, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiao, Lin & Li, Xiaopeng & Jia, Lei & Liu, Sai, 2022. "Improved finite-time solutions to time-varying Sylvester tensor equation via zeroing neural networks," Applied Mathematics and Computation, Elsevier, vol. 416(C).
    2. Qi, Zhaohui & Ning, Yingqiang & Xiao, Lin & Luo, Jiajie & Li, Xiaopeng, 2023. "Finite-time zeroing neural networks with novel activation function and variable parameter for solving time-varying Lyapunov tensor equation," Applied Mathematics and Computation, Elsevier, vol. 452(C).
    3. Weijermars, Ruud & Pham, Tri & Ettehad, Mahmood, 2020. "Linear superposition method (LSM) for solving stress tensor fields and displacement vector fields: Application to multiple pressure-loaded circular holes in an elastic plate with far-field stress," Applied Mathematics and Computation, Elsevier, vol. 381(C).
    4. Jianrong Lu & Ahmad Ghassemi, 2021. "Coupled Thermo–Hydro–Mechanical–Seismic Modeling of EGS Collab Experiment 1," Energies, MDPI, vol. 14(2), pages 1-30, January.
    5. Ruud Weijermars & Jihoon Wang, 2021. "Stress Reversals near Hydraulically Fractured Wells Explained with Linear Superposition Method (LSM)," Energies, MDPI, vol. 14(11), pages 1-22, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:24:p:6474-:d:458509. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.