IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i16p4942-d613339.html
   My bibliography  Save this article

Energy Efficiency and Life Cycle Assessment with System Dynamics of Electricity Production from Rice Straw Using a Combined Gasification and Internal Combustion Engine

Author

Listed:
  • Resmond L. Reaño

    (Department of Engineering Science, College of Engineering and Agro-Industrial Technology, University of the Philippines Los Baños, Laguna 4031, Philippines)

  • Victor Antonio N. de Padua

    (Department of Engineering Science, College of Engineering and Agro-Industrial Technology, University of the Philippines Los Baños, Laguna 4031, Philippines)

  • Anthony B. Halog

    (School of Earth and Environmental Sciences, University of Queensland, St. Lucia, QLD 4072, Australia)

Abstract

This study assessed the environmental performance and energy efficiency of electricity generation from rice straw using a combined gasification and internal combustion engine (G/ICE). A life cycle assessment (LCA) was performed to consider the conversion to electricity of rice straw, the production of which was based on the Philippine farming practice. Rice straw is treated as a milled rice coproduct and assumes an environmental burden which is allocated by mass. The results of an impact assessment for climate change was used directly in a system dynamic model to plot the accumulated greenhouse gas emissions from the system and compare with various cases in order to perform sensitivity analyses. At a productivity of 334 kWh/t, the global warming potential (GWP) of the system is equal to 0.642 kg CO 2 -eq/MJ, which is 27% lower than the GWP of rice straw on-site burning. Mitigating biogenic methane emissions from flooded rice fields could reduce the GWP of the system by 34%, while zero net carbon emissions can be achieved at 2.78 kg CO 2 /kg of milled rice carbon sequestration. Other sources of greenhouse gas (GHG) emissions are the use of fossil fuels and production of chemicals for agricultural use. The use of agricultural machinery and transport lorries has the highest impact on eutrophication potential and human toxicity, while the application of pesticides and fertilizers has the highest impact on ecotoxicity. The biomass energy ratio (BER) and net energy ratio (NER) of the system is 0.065 and 1.64, respectively. The BER and NER can be improved at a higher engine efficiency from 22% to 50%. The use of electricity produced by the G/ICE system to supply farm and plant operations could reduce the environmental impact and efficiency of the process.

Suggested Citation

  • Resmond L. Reaño & Victor Antonio N. de Padua & Anthony B. Halog, 2021. "Energy Efficiency and Life Cycle Assessment with System Dynamics of Electricity Production from Rice Straw Using a Combined Gasification and Internal Combustion Engine," Energies, MDPI, vol. 14(16), pages 1-19, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:4942-:d:613339
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/16/4942/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/16/4942/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cherubini, Francesco & Ulgiati, Sergio, 2010. "Crop residues as raw materials for biorefinery systems - A LCA case study," Applied Energy, Elsevier, vol. 87(1), pages 47-57, January.
    2. Migo-Sumagang, Maria Victoria P. & Van Hung, Nguyen & Detras, Monet Concepcion M. & Alfafara, Catalino G. & Borines, Myra G. & Capunitan, Jewel A. & Gummert, Martin, 2020. "Optimization of a downdraft furnace for rice straw-based heat generation," Renewable Energy, Elsevier, vol. 148(C), pages 953-963.
    3. Beagle, E. & Belmont, E., 2019. "Comparative life cycle assessment of biomass utilization for electricity generation in the European Union and the United States," Energy Policy, Elsevier, vol. 128(C), pages 267-275.
    4. Zachary A. Collier & Elizabeth B. Connelly & Thomas L. Polmateer & James H. Lambert, 2017. "Value chain for next-generation biofuels: resilience and sustainability of the product life cycle," Environment Systems and Decisions, Springer, vol. 37(1), pages 22-33, March.
    5. Martínez, Juan Daniel & Mahkamov, Khamid & Andrade, Rubenildo V. & Silva Lora, Electo E., 2012. "Syngas production in downdraft biomass gasifiers and its application using internal combustion engines," Renewable Energy, Elsevier, vol. 38(1), pages 1-9.
    6. Anis, Samsudin & Zainal, Z.A., 2011. "Tar reduction in biomass producer gas via mechanical, catalytic and thermal methods: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2355-2377, June.
    7. Raman, P. & Ram, N.K., 2013. "Performance analysis of an internal combustion engine operated on producer gas, in comparison with the performance of the natural gas and diesel engines," Energy, Elsevier, vol. 63(C), pages 317-333.
    8. Anthony Halog & Yosef Manik, 2011. "Advancing Integrated Systems Modelling Framework for Life Cycle Sustainability Assessment," Sustainability, MDPI, vol. 3(2), pages 1-31, February.
    9. Aikaterini Konti & Dimitris Kekos & Diomi Mamma, 2020. "Life Cycle Analysis of the Bioethanol Production from Food Waste—A Review," Energies, MDPI, vol. 13(19), pages 1-14, October.
    10. Gençer, Emre & Torkamani, Sarah & Miller, Ian & Wu, Tony Wenzhao & O'Sullivan, Francis, 2020. "Sustainable energy system analysis modeling environment: Analyzing life cycle emissions of the energy transition," Applied Energy, Elsevier, vol. 277(C).
    11. Shafie, S.M. & Masjuki, H.H. & Mahlia, T.M.I., 2014. "Life cycle assessment of rice straw-based power generation in Malaysia," Energy, Elsevier, vol. 70(C), pages 401-410.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Siti Norliyana Harun & Marlia Mohd Hanafiah & Noorashikin Md Noor, 2022. "Rice Straw Utilisation for Bioenergy Production: A Brief Overview," Energies, MDPI, vol. 15(15), pages 1-17, July.
    2. Ginbert P. Cuaton & Laurence L. Delina, 2022. "Two decades of rice research in Indonesia and the Philippines: A systematic review and research agenda for the social sciences," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-21, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ram, Narasimhan Kodanda & Singh, Nameirakpam Rajesh & Raman, Perumal & Kumar, Atul & Kaushal, Priyanka, 2020. "Experimental study on performance analysis of an internal combustion engine operated on hydrogen-enriched producer gas from the air–steam gasification," Energy, Elsevier, vol. 205(C).
    2. Giulio Allesina & Simone Pedrazzi, 2021. "Barriers to Success: A Technical Review on the Limits and Possible Future Roles of Small Scale Gasifiers," Energies, MDPI, vol. 14(20), pages 1-23, October.
    3. Samiran, Nor Afzanizam & Jaafar, Mohammad Nazri Mohd & Ng, Jo-Han & Lam, Su Shiung & Chong, Cheng Tung, 2016. "Progress in biomass gasification technique – With focus on Malaysian palm biomass for syngas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1047-1062.
    4. Ma, Zhongqing & Zhang, Yimeng & Zhang, Qisheng & Qu, Yongbiao & Zhou, Jianbin & Qin, Hengfei, 2012. "Design and experimental investigation of a 190 kWe biomass fixed bed gasification and polygeneration pilot plant using a double air stage downdraft approach," Energy, Elsevier, vol. 46(1), pages 140-147.
    5. Ram, Narasimhan Kodanda & Singh, Nameirakpam Rajesh & Raman, Perumal & Kumar, Atul & Kaushal, Priyanka, 2019. "A detailed experimental analysis of air–steam gasification in a dual fired downdraft biomass gasifier enabling hydrogen enrichment in the producer gas," Energy, Elsevier, vol. 187(C).
    6. Pereira, Emanuele Graciosa & da Silva, Jadir Nogueira & de Oliveira, Jofran L. & Machado, Cássio S., 2012. "Sustainable energy: A review of gasification technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4753-4762.
    7. Hernández, J.J. & Lapuerta, M. & Barba, J., 2015. "Effect of partial replacement of diesel or biodiesel with gas from biomass gasification in a diesel engine," Energy, Elsevier, vol. 89(C), pages 148-157.
    8. Vargas-Salgado, Carlos & Águila-León, Jesús & Alfonso-Solar, David & Malmquist, Anders, 2022. "Simulations and experimental study to compare the behavior of a genset running on gasoline or syngas for small scale power generation," Energy, Elsevier, vol. 244(PA).
    9. Patuzzi, Francesco & Prando, Dario & Vakalis, Stergios & Rizzo, Andrea Maria & Chiaramonti, David & Tirler, Werner & Mimmo, Tanja & Gasparella, Andrea & Baratieri, Marco, 2016. "Small-scale biomass gasification CHP systems: Comparative performance assessment and monitoring experiences in South Tyrol (Italy)," Energy, Elsevier, vol. 112(C), pages 285-293.
    10. Awais, Muhammad & Omar, Muhammad Mubashar & Munir, Anjum & li, Wei & Ajmal, Muhammad & Hussain, Sajjad & Ahmad, Syed Amjad & Ali, Amjad, 2022. "Co-gasification of different biomass feedstock in a pilot-scale (24 kWe) downdraft gasifier: An experimental approach," Energy, Elsevier, vol. 238(PB).
    11. Asadullah, Mohammad, 2014. "Barriers of commercial power generation using biomass gasification gas: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 201-215.
    12. Reyes, Y.A. & Pérez, M. & Barrera, E.L. & Martínez, Y. & Cheng, K.K., 2022. "Thermochemical conversion processes of Dichrostachys cinerea as a biofuel: A review of the Cuban case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    13. Maria Victoria P. Migo-Sumagang & Monet Concepcion Maguyon-Detras & Martin Gummert & Catalino G. Alfafara & Myra G. Borines & Jewel A. Capunitan & Nguyen Van Hung, 2020. "Rice-Straw-Based Heat Generation System Compared to Open-Field Burning and Soil Incorporation of Rice Straw: An Assessment of Energy, GHG Emissions, and Economic Impacts," Sustainability, MDPI, vol. 12(13), pages 1-18, July.
    14. Pulla Rose Havilah & Amit Kumar Sharma & Gopalakrishnan Govindasamy & Leonidas Matsakas & Alok Patel, 2022. "Biomass Gasification in Downdraft Gasifiers: A Technical Review on Production, Up-Gradation and Application of Synthesis Gas," Energies, MDPI, vol. 15(11), pages 1-19, May.
    15. Sansaniwal, S.K. & Rosen, M.A. & Tyagi, S.K., 2017. "Global challenges in the sustainable development of biomass gasification: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 23-43.
    16. Zhai, Jihua & Burke, Ian T. & Stewart, Douglas I., 2021. "Beneficial management of biomass combustion ashes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    17. Arena, Umberto & Di Gregorio, Fabrizio, 2014. "Energy generation by air gasification of two industrial plastic wastes in a pilot scale fluidized bed reactor," Energy, Elsevier, vol. 68(C), pages 735-743.
    18. Danilo Arcentales-Bastidas & Carla Silva & Angel D. Ramirez, 2022. "The Environmental Profile of Ethanol Derived from Sugarcane in Ecuador: A Life Cycle Assessment Including the Effect of Cogeneration of Electricity in a Sugar Industrial Complex," Energies, MDPI, vol. 15(15), pages 1-24, July.
    19. Zhang, Chen & Sun, Zongxuan, 2017. "Trajectory-based combustion control for renewable fuels in free piston engines," Applied Energy, Elsevier, vol. 187(C), pages 72-83.
    20. Bassey, Uduak & Sarquah, Khadija & Hartmann, Michael & Tom, Abasi-ofon & Beck, Gesa & Antwi, Edward & Narra, Satyanarayana & Nelles, Michael, 2023. "Thermal treatment options for single-use, multilayered and composite waste plastics in Africa," Energy, Elsevier, vol. 270(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:4942-:d:613339. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.