IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i16p4816-d610185.html
   My bibliography  Save this article

State-of-the-Art and Future Perspectives of Environmentally Friendly Machining Using Biodegradable Cutting Fluids

Author

Listed:
  • M. Naveed

    (Department of Mechanical Engineering, Sahiwal Campus, COMSATS University Islamabad, Sahiwal 57000, Pakistan)

  • A. Arslan

    (Department of Mechanical Engineering, Sahiwal Campus, COMSATS University Islamabad, Sahiwal 57000, Pakistan)

  • H. M. A. Javed

    (Department of Physics, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan)

  • T. Manzoor

    (Energy Research Centre, Lahore Campus, COMSATS University Islamabad, Punjab 54000, Pakistan)

  • M. M. Quazi

    (Faculty of Mechanical and Automotive Engineering Technology, Universiti Malaysia Pahang, Pekan 26600, Malaysia)

  • T. Imran

    (Department of Mechanical Engineering, College of Engineering, University of Hafr Al Batin, Hafar Al Batin 39524, Saudi Arabia)

  • Z. M. Zulfattah

    (Center for Advanced Research on Energy (CARe), Fakulti Kejuruteraan Mekanikal, Universiti Teknikal Malaysia Melaka, Melaka 75450, Malaysia)

  • M. Khurram

    (Department of Mechanical Engineering, National University of Technology (NUTECH), Islamabad 54000, Pakistan)

  • I. M. R. Fattah

    (Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney (UTS), Ultimo, NSW 2007, Australia)

Abstract

The use of cutting fluids has played a vital role in machining operations in lubrication and cooling. Most cutting fluids are mineral oil-based products that are hazardous to the environment and the worker, cause severe diseases and pollute the environment. In addition, petroleum resources are becoming increasingly unsustainable. Due to environmental and health issues, legislations have been established to ensure that the consumption of mineral oil is reduced. Consequently, researchers are making efforts to replace these mineral oil-based products. Vegetable oils are grasping attention due to their better lubricating properties, ease of availability, biodegradability, low prices, and non-toxicity. In this study, a detailed review and critical analysis are conducted of the research works involving vegetable oils as cutting fluids keeping in view the shortcomings and possible solutions to overcome these drawbacks. The purpose of the review is to emphasise the benefits of vegetable oil-based cutting fluids exhibiting comparable performance to that of mineral oil-based products. In addition, an appropriate selection of non-edible vegetable oil-based cutting fluids along with optimum cutting parameters to avoid a scanty supply of edible oils is also discussed. According to this research, vegetable oils are capable of substituting synthetic cutting fluids, and this option might aid in the successful and cost-efficient implementation of green machining.

Suggested Citation

  • M. Naveed & A. Arslan & H. M. A. Javed & T. Manzoor & M. M. Quazi & T. Imran & Z. M. Zulfattah & M. Khurram & I. M. R. Fattah, 2021. "State-of-the-Art and Future Perspectives of Environmentally Friendly Machining Using Biodegradable Cutting Fluids," Energies, MDPI, vol. 14(16), pages 1-35, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:4816-:d:610185
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/16/4816/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/16/4816/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liaquat, A.M. & Masjuki, H.H. & Kalam, M.A. & Rizwanul Fattah, I.M., 2014. "Impact of biodiesel blend on injector deposit formation," Energy, Elsevier, vol. 72(C), pages 813-823.
    2. Sarkar, Jahar & Ghosh, Pradyumna & Adil, Arjumand, 2015. "A review on hybrid nanofluids: Recent research, development and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 164-177.
    3. Ranga Babu, J.A. & Kumar, K. Kiran & Srinivasa Rao, S., 2017. "State-of-art review on hybrid nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 551-565.
    4. M. A. Mujtaba & H. H. Masjuki & M. A. Kalam & Fahad Noor & Muhammad Farooq & Hwai Chyuan Ong & M. Gul & Manzoore Elahi M. Soudagar & Shahid Bashir & I. M. Rizwanul Fattah & L. Razzaq, 2020. "Effect of Additivized Biodiesel Blends on Diesel Engine Performance, Emission, Tribological Characteristics, and Lubricant Tribology," Energies, MDPI, vol. 13(13), pages 1-16, July.
    5. Rizwanul Fattah, I.M. & Masjuki, H.H. & Liaquat, A.M. & Ramli, Rahizar & Kalam, M.A. & Riazuddin, V.N., 2013. "Impact of various biodiesel fuels obtained from edible and non-edible oils on engine exhaust gas and noise emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 552-567.
    6. S. M. Ashrafur Rahman & I. M. Rizwanul Fattah & Hwai Chyuan Ong & Fajle Rabbi Ashik & Mohammad Mahmudul Hassan & Md Tausif Murshed & Md Ashraful Imran & Md Hamidur Rahman & Md Akibur Rahman & Mohammad, 2021. "State-of-the-Art of Establishing Test Procedures for Real Driving Gaseous Emissions from Light- and Heavy-Duty Vehicles," Energies, MDPI, vol. 14(14), pages 1-32, July.
    7. Mannekote, Jagadeesh K. & Kailas, Satish V. & Venkatesh, K. & Kathyayini, N., 2018. "Environmentally friendly functional fluids from renewable and sustainable sources-A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1787-1801.
    8. Rizwanul Fattah, I.M. & Masjuki, H.H. & Kalam, M.A. & Hazrat, M.A. & Masum, B.M. & Imtenan, S. & Ashraful, A.M., 2014. "Effect of antioxidants on oxidation stability of biodiesel derived from vegetable and animal based feedstocks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 356-370.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ali J. Chamkha & Sina Sazegar & Esmael Jamesahar & Mohammad Ghalambaz, 2019. "Thermal Non-Equilibrium Heat Transfer Modeling of Hybrid Nanofluids in a Structure Composed of the Layers of Solid and Porous Media and Free Nanofluids," Energies, MDPI, vol. 12(3), pages 1-27, February.
    2. Naveed Ahmed & Fitnat Saba & Umar Khan & Ilyas Khan & Tawfeeq Abdullah Alkanhal & Imran Faisal & Syed Tauseef Mohyud-Din, 2018. "Spherical Shaped ( A g − F e 3 O 4 / H 2 O ) Hybrid Nanofluid Flow Squeezed between Two Riga Plates with Nonlinear Thermal Radiation and Chemical Reaction Effects," Energies, MDPI, vol. 12(1), pages 1-23, December.
    3. Najiyah Safwa Khashi’ie & Iskandar Waini & Anuar Ishak & Ioan Pop, 2022. "Blasius Flow over a Permeable Moving Flat Plate Containing Cu-Al 2 O 3 Hybrid Nanoparticles with Viscous Dissipation and Radiative Heat Transfer," Mathematics, MDPI, vol. 10(8), pages 1-18, April.
    4. Fayaz Hussain & Manzoore Elahi M. Soudagar & Asif Afzal & M.A. Mujtaba & I.M. Rizwanul Fattah & Bharat Naik & Mohammed Huzaifa Mulla & Irfan Anjum Badruddin & T. M. Yunus Khan & Vallapudi Dhana Raju &, 2020. "Enhancement in Combustion, Performance, and Emission Characteristics of a Diesel Engine Fueled with Ce-ZnO Nanoparticle Additive Added to Soybean Biodiesel Blends," Energies, MDPI, vol. 13(17), pages 1-20, September.
    5. Iskandar Waini & Anuar Ishak & Ioan Pop, 2021. "Flow towards a Stagnation Region of a Vertical Plate in a Hybrid Nanofluid: Assisting and Opposing Flows," Mathematics, MDPI, vol. 9(4), pages 1-16, February.
    6. Nur Syahirah Wahid & Norihan Md Arifin & Najiyah Safwa Khashi’ie & Ioan Pop, 2020. "Hybrid Nanofluid Slip Flow over an Exponentially Stretching/Shrinking Permeable Sheet with Heat Generation," Mathematics, MDPI, vol. 9(1), pages 1-20, December.
    7. Iskandar Waini & Anuar Ishak & Ioan Pop, 2020. "Squeezed Hybrid Nanofluid Flow Over a Permeable Sensor Surface," Mathematics, MDPI, vol. 8(6), pages 1-20, June.
    8. Humphrey ADUN & Mustapha Mukhtar & Micheal Adedeji & Terfa Agwa & Kefas Hyelda Ibrahim & Olusola Bamisile & Mustafa Dagbasi, 2021. "Synthesis and Application of Ternary Nanofluid for Photovoltaic-Thermal System: Comparative Analysis of Energy and Exergy Performance with Single and Hybrid Nanofluids," Energies, MDPI, vol. 14(15), pages 1-26, July.
    9. Iskandar Waini & Anuar Ishak & Ioan Pop, 2021. "Flow towards a Stagnation Region of a Curved Surface in a Hybrid Nanofluid with Buoyancy Effects," Mathematics, MDPI, vol. 9(18), pages 1-13, September.
    10. Sylwia Wciślik, 2020. "Efficient Stabilization of Mono and Hybrid Nanofluids," Energies, MDPI, vol. 13(15), pages 1-26, July.
    11. Iskandar Waini & Anuar Ishak & Ioan Pop, 2021. "Hybrid Nanofluid Flow over a Permeable Non-Isothermal Shrinking Surface," Mathematics, MDPI, vol. 9(5), pages 1-18, March.
    12. Bhalla, Vishal & Tyagi, Himanshu, 2018. "Parameters influencing the performance of nanoparticles-laden fluid-based solar thermal collectors: A review on optical properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 12-42.
    13. Najiyah Safwa Khashi’ie & Norihan Md Arifin & Ioan Pop, 2020. "Mixed Convective Stagnation Point Flow towards a Vertical Riga Plate in Hybrid Cu-Al 2 O 3 /Water Nanofluid," Mathematics, MDPI, vol. 8(6), pages 1-21, June.
    14. R. S. Gavhane & A. M. Kate & Manzoore Elahi M. Soudagar & V. D. Wakchaure & Sagar Balgude & I. M. Rizwanul Fattah & Nik-Nazri Nik-Ghazali & H. Fayaz & T. M. Yunus Khan & M. A. Mujtaba & Ravinder Kumar, 2021. "Influence of Silica Nano-Additives on Performance and Emission Characteristics of Soybean Biodiesel Fuelled Diesel Engine," Energies, MDPI, vol. 14(5), pages 1-16, March.
    15. S. M. Ashrafur Rahman & I. M. Rizwanul Fattah & Hwai Chyuan Ong & M. F. M. A. Zamri, 2021. "State-of-the-Art of Strategies to Reduce Exhaust Emissions from Diesel Engine Vehicles," Energies, MDPI, vol. 14(6), pages 1-24, March.
    16. J. Sadhik Basha & Tahereh Jafary & Ranjit Vasudevan & Jahanzeb Khan Bahadur & Muna Al Ajmi & Aadil Al Neyadi & Manzoore Elahi M. Soudagar & MA Mujtaba & Abrar Hussain & Waqar Ahmed & Kiran Shahapurkar, 2021. "Potential of Utilization of Renewable Energy Technologies in Gulf Countries," Sustainability, MDPI, vol. 13(18), pages 1-29, September.
    17. Siti Nur Alwani Salleh & Norfifah Bachok & Ioan Pop, 2021. "Mixed Convection Stagnation Point Flow of a Hybrid Nanofluid Past a Permeable Flat Plate with Radiation Effect," Mathematics, MDPI, vol. 9(21), pages 1-17, October.
    18. Sedighi, Mohammadreza & Padilla, Ricardo Vasquez & Alamdari, Pedram & Lake, Maree & Rose, Andrew & Izadgoshasb, Iman & Taylor, Robert A., 2020. "A novel high-temperature (>700 °C), volumetric receiver with a packed bed of transparent and absorbing spheres," Applied Energy, Elsevier, vol. 264(C).
    19. Muhammad Usman & Haris Hussain & Fahid Riaz & Muneeb Irshad & Rehmat Bashir & Muhammad Haris Shah & Adeel Ahmad Zafar & Usman Bashir & M. A. Kalam & M. A. Mujtaba & Manzoore Elahi M. Soudagar, 2021. "Artificial Neural Network Led Optimization of Oxyhydrogen Hybridized Diesel Operated Engine," Sustainability, MDPI, vol. 13(16), pages 1-24, August.
    20. Amjad Ali & Zainab Bukhari & Gullnaz Shahzadi & Zaheer Abbas & Muhammad Umar, 2021. "Numerical Simulation of the Thermally Developed Pulsatile Flow of a Hybrid Nanofluid in a Constricted Channel," Energies, MDPI, vol. 14(9), pages 1-22, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:4816-:d:610185. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.