IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v81y2018ip2p1787-1801.html
   My bibliography  Save this article

Environmentally friendly functional fluids from renewable and sustainable sources-A review

Author

Listed:
  • Mannekote, Jagadeesh K.
  • Kailas, Satish V.
  • Venkatesh, K.
  • Kathyayini, N.

Abstract

Use of animal and plant based oils for lubrication dates back to history. Discovery of petroleum and subsequent improvements in the refining technologies replaced them with mineral oil based lubricants. Mineral oil is a fast depleting resource and is also considered as an environmental pollutant. Impact of mineral oil based lubricants and restrictive environmental regulations have increased interest in lubricants derived from natural resources. Vegetable oils being renewable, non-toxic and biodegradable have become the primary choice for environmentally sensitive and total loss lubricant applications ranging from hydraulic oils to grease. This study covers the technical viabilities associated with vegetable oil based lubricants in different applications. In the first part of this review eco labeling, environmental regulations, source, composition and availability of vegetable oils are discussed. In the later part of review, performance evaluation of vegetable oils in different applications is covered. It has been noticed that straight vegetable oils have performed satisfactorily in metal forming; metal working, hydraulic applications and have shown promising performance as greases and engine oils. It was also observed that the selection of lubricant is based on price, then on performance, and lastly on environmental consideration. This would change only with the legislative pressure on restricting the use of petroleum based products and economic incentives for biobased lubricants in environmentally sensitive applications.

Suggested Citation

  • Mannekote, Jagadeesh K. & Kailas, Satish V. & Venkatesh, K. & Kathyayini, N., 2018. "Environmentally friendly functional fluids from renewable and sustainable sources-A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1787-1801.
  • Handle: RePEc:eee:rensus:v:81:y:2018:i:p2:p:1787-1801
    DOI: 10.1016/j.rser.2017.05.274
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032117309255
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2017.05.274?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tzanakis, I. & Hadfield, M. & Thomas, B. & Noya, S.M. & Henshaw, I. & Austen, S., 2012. "Future perspectives on sustainable tribology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4126-4140.
    2. Zulkifli, N.W.M. & Kalam, M.A. & Masjuki, H.H. & Shahabuddin, M. & Yunus, R., 2013. "Wear prevention characteristics of a palm oil-based TMP (trimethylolpropane) ester as an engine lubricant," Energy, Elsevier, vol. 54(C), pages 167-173.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mariappan Kadarkarainadar Marichelvam & Parthasarathy Manimaran & Anish Khan & Mariappan Geetha & Abeer Mohamed Alosaimi & Mahmoud Ali Hussein, 2022. "Development of Eco-Friendly Cutting Fluid for Machining of AISI 1010 Steel in Automotive Industry," Sustainability, MDPI, vol. 14(15), pages 1-12, August.
    2. Ho, Calvin K. & McAuley, Kimberley B. & Peppley, Brant A., 2019. "Biolubricants through renewable hydrocarbons: A perspective for new opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    3. M. Naveed & A. Arslan & H. M. A. Javed & T. Manzoor & M. M. Quazi & T. Imran & Z. M. Zulfattah & M. Khurram & I. M. R. Fattah, 2021. "State-of-the-Art and Future Perspectives of Environmentally Friendly Machining Using Biodegradable Cutting Fluids," Energies, MDPI, vol. 14(16), pages 1-35, August.
    4. Said, Zafar & El Haj Assad, M. & Hachicha, Ahmed Amine & Bellos, Evangelos & Abdelkareem, Mohammad Ali & Alazaizeh, Duha Zeyad & Yousef, Bashria A.A., 2019. "Enhancing the performance of automotive radiators using nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 183-194.
    5. Tuti Suryati & Euis Julaeha & Kindi Farabi & Hanies Ambarsari & Ace Tatang Hidayat, 2023. "Lauric Acid from the Black Soldier Fly ( Hermetia illucens ) and Its Potential Applications," Sustainability, MDPI, vol. 15(13), pages 1-28, June.
    6. Abbassi, Abdelkader & Abbassi, Rabeh & Heidari, Ali Asghar & Oliva, Diego & Chen, Huiling & Habib, Arslan & Jemli, Mohamed & Wang, Mingjing, 2020. "Parameters identification of photovoltaic cell models using enhanced exploratory salp chains-based approach," Energy, Elsevier, vol. 198(C).
    7. Samera Nazir & Li Zhaolei & Saqib Mehmood & Zarish Nazir, 2024. "Impact of Green Supply Chain Management Practices on the Environmental Performance of Manufacturing Firms Considering Institutional Pressure as a Moderator," Sustainability, MDPI, vol. 16(6), pages 1-30, March.
    8. Hamnas, Amina & Unnikrishnan, G., 2023. "Bio-lubricants from vegetable oils: Characterization, modifications, applications and challenges – Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yazdanpanah, Masoud & Komendantova, Nadejda & Ardestani, Roshanak Shafiei, 2015. "Governance of energy transition in Iran: Investigating public acceptance and willingness to use renewable energy sources through socio-psychological model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 565-573.
    2. Nketiah, Emmanuel & Song, Huaming & Adu-Gyamfi, Gibbson & Obuobi, Bright & Adjei, Mavis & Cudjoe, Dan, 2022. "Does government involvement and awareness of benefit affect Ghanaian's willingness to pay for renewable green electricity?," Renewable Energy, Elsevier, vol. 197(C), pages 683-694.
    3. Hamnas, Amina & Unnikrishnan, G., 2023. "Bio-lubricants from vegetable oils: Characterization, modifications, applications and challenges – Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    4. Chan, Chung-Hung & Tang, Sook Wah & Mohd, Noor Khairin & Lim, Wen Huei & Yeong, Shoot Kian & Idris, Zainab, 2018. "Tribological behavior of biolubricant base stocks and additives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 145-157.
    5. Arumugam, S. & Sriram, G. & Ellappan, R., 2014. "Bio-lubricant-biodiesel combination of rapeseed oil: An experimental investigation on engine oil tribology, performance, and emissions of variable compression engine," Energy, Elsevier, vol. 72(C), pages 618-627.
    6. Rajendra Uppar & P. Dinesha & Shiva Kumar, 2023. "A critical review on vegetable oil-based bio-lubricants: preparation, characterization, and challenges," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(9), pages 9011-9046, September.
    7. Rasep, Z. & Muhammad Yazid, M.N.A.W. & Samion, S., 2021. "Lubrication of textured journal bearing by using vegetable oil: A review of approaches, challenges, and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    8. Gulzar, M. & Masjuki, H.H. & Alabdulkarem, Abdullah & Kalam, M.A. & Varman, M. & Zulkifli, N.W.M. & Zahid, Rehan & Yunus, R., 2017. "Chemically active oil filter to develop detergent free bio-based lubrication for diesel engine," Energy, Elsevier, vol. 124(C), pages 413-422.
    9. Abul Kalam Azad & Mohammad Golam Rasul & Subhash Chandra Sharma & Mohammad Masud Kamal Khan, 2017. "The Lubricity of Ternary Fuel Mixture Blends as a Way to Assess Diesel Engine Durability," Energies, MDPI, vol. 11(1), pages 1-15, December.
    10. Huang, Chu & Zhu, Haixi & Ma, Yinjie & E, Jiaqiang, 2023. "Evaluation of lithium battery immersion thermal management using a novel pentaerythritol ester coolant," Energy, Elsevier, vol. 284(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:81:y:2018:i:p2:p:1787-1801. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.