IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i4p448-d504357.html
   My bibliography  Save this article

Flow towards a Stagnation Region of a Vertical Plate in a Hybrid Nanofluid: Assisting and Opposing Flows

Author

Listed:
  • Iskandar Waini

    (Fakulti Teknologi Kejuruteraan Mekanikal dan Pembuatan, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian Tunggal 76100, Melaka, Malaysia
    Department of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia)

  • Anuar Ishak

    (Department of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia)

  • Ioan Pop

    (Department of Mathematics, Babeş-Bolyai University, 400084 Cluj-Napoca, Romania)

Abstract

This study investigates a hybrid nanofluid flow towards a stagnation region of a vertical plate with radiation effects. The hybrid nanofluid consists of copper (Cu) and alumina (Al 2 O 3 ) nanoparticles which are added into water to form Cu-Al 2 O 3 /water nanofluid. The stagnation point flow describes the fluid motion in the stagnation region of a solid surface. In this study, both buoyancy assisting and opposing flows are considered. The similarity equations are obtained using a similarity transformation and numerical results are obtained via the boundary value problem solver (bvp4c) in MATLAB software. Findings discovered that dual solutions exist for both opposing and assisting flows. The heat transfer rate is intensified with the thermal radiation (49.63%) and the hybrid nanoparticles (32.37%).

Suggested Citation

  • Iskandar Waini & Anuar Ishak & Ioan Pop, 2021. "Flow towards a Stagnation Region of a Vertical Plate in a Hybrid Nanofluid: Assisting and Opposing Flows," Mathematics, MDPI, vol. 9(4), pages 1-16, February.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:4:p:448-:d:504357
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/4/448/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/4/448/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nurul Amira Zainal & Roslinda Nazar & Kohilavani Naganthran & Ioan Pop, 2020. "Unsteady Three-Dimensional MHD Non-Axisymmetric Homann Stagnation Point Flow of a Hybrid Nanofluid with Stability Analysis," Mathematics, MDPI, vol. 8(5), pages 1-23, May.
    2. Sarkar, Jahar & Ghosh, Pradyumna & Adil, Arjumand, 2015. "A review on hybrid nanofluids: Recent research, development and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 164-177.
    3. Ranga Babu, J.A. & Kumar, K. Kiran & Srinivasa Rao, S., 2017. "State-of-art review on hybrid nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 551-565.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Iskandar Waini & Anuar Ishak & Ioan Pop, 2021. "Hybrid Nanofluid Flow over a Permeable Non-Isothermal Shrinking Surface," Mathematics, MDPI, vol. 9(5), pages 1-18, March.
    2. Ali J. Chamkha & Sina Sazegar & Esmael Jamesahar & Mohammad Ghalambaz, 2019. "Thermal Non-Equilibrium Heat Transfer Modeling of Hybrid Nanofluids in a Structure Composed of the Layers of Solid and Porous Media and Free Nanofluids," Energies, MDPI, vol. 12(3), pages 1-27, February.
    3. Naveed Ahmed & Fitnat Saba & Umar Khan & Ilyas Khan & Tawfeeq Abdullah Alkanhal & Imran Faisal & Syed Tauseef Mohyud-Din, 2018. "Spherical Shaped ( A g − F e 3 O 4 / H 2 O ) Hybrid Nanofluid Flow Squeezed between Two Riga Plates with Nonlinear Thermal Radiation and Chemical Reaction Effects," Energies, MDPI, vol. 12(1), pages 1-23, December.
    4. Najiyah Safwa Khashi’ie & Iskandar Waini & Anuar Ishak & Ioan Pop, 2022. "Blasius Flow over a Permeable Moving Flat Plate Containing Cu-Al 2 O 3 Hybrid Nanoparticles with Viscous Dissipation and Radiative Heat Transfer," Mathematics, MDPI, vol. 10(8), pages 1-18, April.
    5. M. Naveed & A. Arslan & H. M. A. Javed & T. Manzoor & M. M. Quazi & T. Imran & Z. M. Zulfattah & M. Khurram & I. M. R. Fattah, 2021. "State-of-the-Art and Future Perspectives of Environmentally Friendly Machining Using Biodegradable Cutting Fluids," Energies, MDPI, vol. 14(16), pages 1-35, August.
    6. Nur Syahirah Wahid & Norihan Md Arifin & Najiyah Safwa Khashi’ie & Ioan Pop, 2020. "Hybrid Nanofluid Slip Flow over an Exponentially Stretching/Shrinking Permeable Sheet with Heat Generation," Mathematics, MDPI, vol. 9(1), pages 1-20, December.
    7. Iskandar Waini & Anuar Ishak & Ioan Pop, 2020. "Squeezed Hybrid Nanofluid Flow Over a Permeable Sensor Surface," Mathematics, MDPI, vol. 8(6), pages 1-20, June.
    8. Humphrey ADUN & Mustapha Mukhtar & Micheal Adedeji & Terfa Agwa & Kefas Hyelda Ibrahim & Olusola Bamisile & Mustafa Dagbasi, 2021. "Synthesis and Application of Ternary Nanofluid for Photovoltaic-Thermal System: Comparative Analysis of Energy and Exergy Performance with Single and Hybrid Nanofluids," Energies, MDPI, vol. 14(15), pages 1-26, July.
    9. Iskandar Waini & Anuar Ishak & Ioan Pop, 2021. "Flow towards a Stagnation Region of a Curved Surface in a Hybrid Nanofluid with Buoyancy Effects," Mathematics, MDPI, vol. 9(18), pages 1-13, September.
    10. Sylwia Wciślik, 2020. "Efficient Stabilization of Mono and Hybrid Nanofluids," Energies, MDPI, vol. 13(15), pages 1-26, July.
    11. Bhalla, Vishal & Tyagi, Himanshu, 2018. "Parameters influencing the performance of nanoparticles-laden fluid-based solar thermal collectors: A review on optical properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 12-42.
    12. Nurul Amira Zainal & Roslinda Nazar & Kohilavani Naganthran & Ioan Pop, 2021. "Stability Analysis of Unsteady MHD Rear Stagnation Point Flow of Hybrid Nanofluid," Mathematics, MDPI, vol. 9(19), pages 1-15, September.
    13. Najiyah Safwa Khashi’ie & Norihan Md Arifin & Ioan Pop, 2020. "Mixed Convective Stagnation Point Flow towards a Vertical Riga Plate in Hybrid Cu-Al 2 O 3 /Water Nanofluid," Mathematics, MDPI, vol. 8(6), pages 1-21, June.
    14. Siti Nur Alwani Salleh & Norfifah Bachok & Ioan Pop, 2021. "Mixed Convection Stagnation Point Flow of a Hybrid Nanofluid Past a Permeable Flat Plate with Radiation Effect," Mathematics, MDPI, vol. 9(21), pages 1-17, October.
    15. Sedighi, Mohammadreza & Padilla, Ricardo Vasquez & Alamdari, Pedram & Lake, Maree & Rose, Andrew & Izadgoshasb, Iman & Taylor, Robert A., 2020. "A novel high-temperature (>700 °C), volumetric receiver with a packed bed of transparent and absorbing spheres," Applied Energy, Elsevier, vol. 264(C).
    16. Amjad Ali & Zainab Bukhari & Gullnaz Shahzadi & Zaheer Abbas & Muhammad Umar, 2021. "Numerical Simulation of the Thermally Developed Pulsatile Flow of a Hybrid Nanofluid in a Constricted Channel," Energies, MDPI, vol. 14(9), pages 1-22, April.
    17. Mohammed M. Fayyadh & Kohilavani Naganthran & Md Faisal Md Basir & Ishak Hashim & Rozaini Roslan, 2020. "Radiative MHD Sutterby Nanofluid Flow Past a Moving Sheet: Scaling Group Analysis," Mathematics, MDPI, vol. 8(9), pages 1-18, August.
    18. Michael Bohm & Josef Stetina & David Svida, 2022. "Exhaust Gas Temperature Pulsations of a Gasoline Engine and Its Stabilization Using Thermal Energy Storage System to Reduce Emissions," Energies, MDPI, vol. 15(7), pages 1-16, March.
    19. Iskandar Waini & Anuar Ishak & Ioan Pop, 2020. "Hybrid Nanofluid Flow Past a Permeable Moving Thin Needle," Mathematics, MDPI, vol. 8(4), pages 1-18, April.
    20. Samah Hamze & David Cabaleiro & Dominique Bégin & Alexandre Desforges & Thierry Maré & Brigitte Vigolo & Luis Lugo & Patrice Estellé, 2020. "Volumetric Properties and Surface Tension of Few-Layer Graphene Nanofluids Based on a Commercial Heat Transfer Fluid," Energies, MDPI, vol. 13(13), pages 1-18, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:4:p:448-:d:504357. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.