IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i15p4511-d601817.html
   My bibliography  Save this article

Influence of Valorization of Sewage Sludge on Energy Consumption in the Drying Process

Author

Listed:
  • Ewa Siedlecka

    (Faculty of Infrastructure and Environment, Czestochowa University of Technology, Brzeźnicka St. 60a, 42-200 Częstochowa, Poland)

  • Jarosław Siedlecki

    (Department of Mathematics, Czestochowa University of Technology, Armii Krajowej St. 21, 42-200 Częstochowa, Poland)

Abstract

Valorization of digested sewage sludge generated in a medium-sized sewage treatment plant and the effect of valorization on energy consumption during sludge drying used for energy recovery are presented. Anaerobic digestion of sewage sludge reduces dry matter content compared to raw sludge. This lowers its calorific value leading to the lower interest of consumers in using it as fuel. The aim of the study was to valorize digested sewage sludge prior to drying with high-energy waste with low moisture content. The procedure led to the reduction in moisture content by about 50% in the substrate supplied for solidification and drying. The calorific value of digested sewage sludge increased by 50–80%, and the energy consumption of the drying process decreased by about 50%. Physical and chemical properties of sewage sludge and moisture content of substrates and mixtures after valorization were determined. The heat of combustion of valorized sewage sludge mixtures, their elemental composition, and ash content is investigated. Their calorific value in the analytical and working states of 10% H 2 O was calculated. The highest calorific value was obtained for the mixture of sewage sludge valorized with waste plastics or combined with wood dust, averaging 23 MJ/kg. A mathematical approximation of sewage sludge valorization is presented.

Suggested Citation

  • Ewa Siedlecka & Jarosław Siedlecki, 2021. "Influence of Valorization of Sewage Sludge on Energy Consumption in the Drying Process," Energies, MDPI, vol. 14(15), pages 1-19, July.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:15:p:4511-:d:601817
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/15/4511/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/15/4511/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marcin Jewiarz & Krzysztof Mudryk & Marek Wróbel & Jarosław Frączek & Krzysztof Dziedzic, 2020. "Parameters Affecting RDF-Based Pellet Quality," Energies, MDPI, vol. 13(4), pages 1-17, February.
    2. Wilhelm Jan Tic & Joanna Guziałowska-Tic & Halina Pawlak-Kruczek & Eugeniusz Woźnikowski & Adam Zadorożny & Łukasz Niedźwiecki & Mateusz Wnukowski & Krystian Krochmalny & Michał Czerep & Michał Ostryc, 2018. "Novel Concept of an Installation for Sustainable Thermal Utilization of Sewage Sludge," Energies, MDPI, vol. 11(4), pages 1-17, March.
    3. Dinko Đurđević & Paolo Blecich & Željko Jurić, 2019. "Energy Recovery from Sewage Sludge: The Case Study of Croatia," Energies, MDPI, vol. 12(10), pages 1-19, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gabriele Di Giacomo, 2021. "Material and Energy Recovery from the Final Disposal of Organic Waste," Energies, MDPI, vol. 14(24), pages 1-2, December.
    2. Tomasz Mołczan & Piotr Cyklis, 2022. "Mathematical Model of Air Dryer Heat Pump Exchangers," Energies, MDPI, vol. 15(19), pages 1-23, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adrian Knapczyk & Sławomir Francik & Marcin Jewiarz & Agnieszka Zawiślak & Renata Francik, 2020. "Thermal Treatment of Biomass: A Bibliometric Analysis—The Torrefaction Case," Energies, MDPI, vol. 14(1), pages 1-31, December.
    2. Que Nguyen Ho & Giridhar Babu Anam & Jaein Kim & Somin Park & Tae-U Lee & Jae-Young Jeon & Yun-Young Choi & Young-Ho Ahn & Byung Joon Lee, 2022. "Fate of Sulfate in Municipal Wastewater Treatment Plants and Its Effect on Sludge Recycling as a Fuel Source," Sustainability, MDPI, vol. 15(1), pages 1-14, December.
    3. Giuseppe Campo & Alberto Cerutti & Claudio Lastella & Aldo Leo & Deborah Panepinto & Mariachiara Zanetti & Barbara Ruffino, 2021. "Production and Destination of Sewage Sludge in the Piemonte Region (Italy): The Results of a Survey for a Future Sustainable Management," IJERPH, MDPI, vol. 18(7), pages 1-13, March.
    4. Marcin Jewiarz & Marek Wróbel & Krzysztof Mudryk & Szymon Szufa, 2020. "Impact of the Drying Temperature and Grinding Technique on Biomass Grindability," Energies, MDPI, vol. 13(13), pages 1-22, July.
    5. Jakub Styks & Marek Wróbel & Jarosław Frączek & Adrian Knapczyk, 2020. "Effect of Compaction Pressure and Moisture Content on Quality Parameters of Perennial Biomass Pellets," Energies, MDPI, vol. 13(8), pages 1-20, April.
    6. Dinko Đurđević & Saša Žiković & Tomislav Čop, 2022. "Socio-Economic, Technical and Environmental Indicators for Sustainable Sewage Sludge Management and LEAP Analysis of Emissions Reduction," Energies, MDPI, vol. 15(16), pages 1-15, August.
    7. Marzena Smol, 2023. "Circular Economy in Wastewater Treatment Plant—Water, Energy and Raw Materials Recovery," Energies, MDPI, vol. 16(9), pages 1-18, May.
    8. Norbert Miskolczi & Szabina Tomasek, 2022. "Investigation of Pyrolysis Behavior of Sewage Sludge by Thermogravimetric Analysis Coupled with Fourier Transform Infrared Spectrometry Using Different Heating Rates," Energies, MDPI, vol. 15(14), pages 1-18, July.
    9. Liu, Hanqiao & Qiao, Haoyu & Liu, Shiqi & Wei, Guoxia & Zhao, Hailong & Li, Kai & Weng, Fangkai, 2023. "Energy, environment and economy assessment of sewage sludge incineration technologies in China," Energy, Elsevier, vol. 264(C).
    10. Dinko Đurđević & Saša Žiković & Paolo Blecich, 2022. "Sustainable Sewage Sludge Management Technologies Selection Based on Techno-Economic-Environmental Criteria: Case Study of Croatia," Energies, MDPI, vol. 15(11), pages 1-23, May.
    11. Krzysztof Gaska & Agnieszka Generowicz, 2020. "SMART Computational Solutions for the Optimization of Selected Technology Processes as an Innovation and Progress in Improving Energy Efficiency of Smart Cities—A Case Study," Energies, MDPI, vol. 13(13), pages 1-41, June.
    12. Jankowski, Krzysztof Józef & Kołodziej, Barbara & Dubis, Bogdan & Sugier, Danuta & Antonkiewicz, Jacek & Szatkowski, Artur, 2023. "The effect of sewage sludge on the energy balance of cup plant biomass production. A six-year field experiment in Poland," Energy, Elsevier, vol. 276(C).
    13. Halina Pawlak-Kruczek & Mateusz Wnukowski & Lukasz Niedzwiecki & Michał Czerep & Mateusz Kowal & Krystian Krochmalny & Jacek Zgóra & Michał Ostrycharczyk & Marcin Baranowski & Wilhelm Jan Tic & Joanna, 2019. "Torrefaction as a Valorization Method Used Prior to the Gasification of Sewage Sludge," Energies, MDPI, vol. 12(1), pages 1-18, January.
    14. Oumaima Mabrouk & Helmi Hamdi & Sami Sayadi & Mohammad A. Al-Ghouti & Mohammed H. Abu-Dieyeh & Nabil Zouari, 2023. "Reuse of Sludge as Organic Soil Amendment: Insights into the Current Situation and Potential Challenges," Sustainability, MDPI, vol. 15(8), pages 1-25, April.
    15. Gulnar Sugurbekova & Elvira Nagyzbekkyzy & Ainur Sarsenova & Gaziza Danlybayeva & Sandugash Anuarbekova & Rabiga Kudaibergenova & Céline Frochot & Samir Acherar & Yerlan Zhatkanbayev & Nazira Moldagul, 2023. "Sewage Sludge Management and Application in the Form of Sustainable Fertilizer," Sustainability, MDPI, vol. 15(7), pages 1-15, April.
    16. González-Núñez, Sofía & Guerras, Lidia S. & Martín, Mariano, 2023. "A multiscale analysis approach for the valorization of sludge and MSW via co-incineration," Energy, Elsevier, vol. 263(PE).
    17. Ahmed, Gaffer & Kishore, Nanda, 2023. "Fuel phase extraction from pyrolytic liquid of Azadirachta indica biomass followed by subsequent characterization of pyrolysis products," Renewable Energy, Elsevier, vol. 219(P1).
    18. Jongkeun Lee & Oh Kyung Choi & Dooyoung Oh & Kawnyong Lee & Ki Young Park & Daegi Kim, 2020. "Stimulation of Lipid Extraction Efficiency from Sewage Sludge for Biodiesel Production through Hydrothermal Pretreatment," Energies, MDPI, vol. 13(23), pages 1-10, December.
    19. Štefan Bojnec & Alan Križaj, 2021. "Electricity Markets during the Liberalization: The Case of a European Union Country," Energies, MDPI, vol. 14(14), pages 1-21, July.
    20. Gabriele Di Giacomo & Pietro Romano, 2022. "Evolution and Prospects in Managing Sewage Sludge Resulting from Municipal Wastewater Purification," Energies, MDPI, vol. 15(15), pages 1-33, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:15:p:4511-:d:601817. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.