IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i10p1927-d232773.html
   My bibliography  Save this article

Energy Recovery from Sewage Sludge: The Case Study of Croatia

Author

Listed:
  • Dinko Đurđević

    (Energy Institute Hrvoje Požar, 10000 Zagreb, Croatia)

  • Paolo Blecich

    (Faculty of Engineering, University of Rijeka, 51000 Rijeka, Croatia)

  • Željko Jurić

    (Energy Institute Hrvoje Požar, 10000 Zagreb, Croatia)

Abstract

Croatia produced 21,366 tonnes of dry matter (DM) sewage sludge (SS) in 2016, a quantity expected to surpass 100,000 tonnes DM by 2024. Annual production rates for future wastewater treatment plants (WWTP) in Croatia are estimated at 5.8–7.3 Nm 3 /people equivalent (PE) for biogas and 20–25 kg DM /PE of sewage sludge. Biogas can be converted into 12–16 kWh el /PE of electricity and 19–24 kWh th /PE of heat, which is sufficient for 30–40% of electrical and 80–100% of thermal autonomy. The WWTP autonomy can be increased using energy recovery from sewage sludge incineration by 60% for electricity and 100% of thermal energy (10–13 kWh el /PE and 30–38 kWh th /PE). However, energy for sewage sludge drying exceeds energy recovery, unless solar drying is performed. The annual solar drying potential is estimated between 450–750 kg DM /m 2 of solar drying surface. The lower heating value of dried sewage sludge is 2–3 kWh/kg DM and this energy can be used for assisting sludge drying or for energy generation and supply to WWTPs. Sewage sludge can be considered a renewable energy source and its incineration generates substantially lower greenhouse gases emissions than energy generation from fossil fuels. For the same amount of energy, sewage sludge emits 58% fewer emissions than natural gas and 80% less than hard coal and fuel oil. Moreover, this paper analysed the feasibility of sludge disposal practices by analysing three scenarios (landfilling, co-incineration, and mono-incineration). The analysis revealed that the most cost-effective sewage sludge disposal method is landfilling for 60% and co-incineration for 40% of the observed WWTPs in Croatia. The lowest CO 2 emissions are obtained with landfilling and mono-incineration in 53% and 38% of the cases, respectively.

Suggested Citation

  • Dinko Đurđević & Paolo Blecich & Željko Jurić, 2019. "Energy Recovery from Sewage Sludge: The Case Study of Croatia," Energies, MDPI, vol. 12(10), pages 1-19, May.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:10:p:1927-:d:232773
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/10/1927/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/10/1927/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Di Fraia, S. & Massarotti, N. & Vanoli, L. & Costa, M., 2016. "Thermo-economic analysis of a novel cogeneration system for sewage sludge treatment," Energy, Elsevier, vol. 115(P3), pages 1560-1571.
    2. Cao, Yucheng & Pawłowski, Artur, 2012. "Sewage sludge-to-energy approaches based on anaerobic digestion and pyrolysis: Brief overview and energy efficiency assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1657-1665.
    3. Ola Eriksson & Göran Finnveden, 2017. "Energy Recovery from Waste Incineration—The Importance of Technology Data and System Boundaries on CO 2 Emissions," Energies, MDPI, vol. 10(4), pages 1-18, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. González-Núñez, Sofía & Guerras, Lidia S. & Martín, Mariano, 2023. "A multiscale analysis approach for the valorization of sludge and MSW via co-incineration," Energy, Elsevier, vol. 263(PE).
    2. Que Nguyen Ho & Giridhar Babu Anam & Jaein Kim & Somin Park & Tae-U Lee & Jae-Young Jeon & Yun-Young Choi & Young-Ho Ahn & Byung Joon Lee, 2022. "Fate of Sulfate in Municipal Wastewater Treatment Plants and Its Effect on Sludge Recycling as a Fuel Source," Sustainability, MDPI, vol. 15(1), pages 1-14, December.
    3. Giuseppe Campo & Alberto Cerutti & Claudio Lastella & Aldo Leo & Deborah Panepinto & Mariachiara Zanetti & Barbara Ruffino, 2021. "Production and Destination of Sewage Sludge in the Piemonte Region (Italy): The Results of a Survey for a Future Sustainable Management," IJERPH, MDPI, vol. 18(7), pages 1-13, March.
    4. Gulnar Sugurbekova & Elvira Nagyzbekkyzy & Ainur Sarsenova & Gaziza Danlybayeva & Sandugash Anuarbekova & Rabiga Kudaibergenova & Céline Frochot & Samir Acherar & Yerlan Zhatkanbayev & Nazira Moldagul, 2023. "Sewage Sludge Management and Application in the Form of Sustainable Fertilizer," Sustainability, MDPI, vol. 15(7), pages 1-15, April.
    5. Bezirgiannidis, Athanasios & Chatzopoulos, Paraschos & Tsakali, Aikaterini & Ntougias, Spyridon & Melidis, Paraschos, 2020. "Renewable energy recovery from sewage sludge derived from chemically enhanced precipitation," Renewable Energy, Elsevier, vol. 162(C), pages 1811-1818.
    6. Juan A. Conesa & Nuria Ortuño, 2022. "Reuse of Water Contaminated by Microplastics, the Effectiveness of Filtration Processes: A Review," Energies, MDPI, vol. 15(7), pages 1-16, March.
    7. Adam Masłoń & Joanna Czarnota & Aleksandra Szaja & Joanna Szulżyk-Cieplak & Grzegorz Łagód, 2020. "The Enhancement of Energy Efficiency in a Wastewater Treatment Plant through Sustainable Biogas Use: Case Study from Poland," Energies, MDPI, vol. 13(22), pages 1-21, November.
    8. Mohammad Ghorbani & Petr Konvalina & Anna Walkiewicz & Reinhard W. Neugschwandtner & Marek Kopecký & Kazem Zamanian & Wei-Hsin Chen & Daniel Bucur, 2022. "Feasibility of Biochar Derived from Sewage Sludge to Promote Sustainable Agriculture and Mitigate GHG Emissions—A Review," IJERPH, MDPI, vol. 19(19), pages 1-23, October.
    9. Juan Jesús De la Torre Bayo & Montserrat Zamorano Toro & Luz Marina Ruiz & Juan Carlos Torres Rojo & Jaime Martín Pascual, 2023. "Analysing the Sustainability of the Production of Solid Recovered Fuel from Screening Waste," Sustainability, MDPI, vol. 15(18), pages 1-15, September.
    10. Ewa Siedlecka & Jarosław Siedlecki, 2021. "Influence of Valorization of Sewage Sludge on Energy Consumption in the Drying Process," Energies, MDPI, vol. 14(15), pages 1-19, July.
    11. Marzena Smol, 2023. "Circular Economy in Wastewater Treatment Plant—Water, Energy and Raw Materials Recovery," Energies, MDPI, vol. 16(9), pages 1-18, May.
    12. Liu, Hanqiao & Qiao, Haoyu & Liu, Shiqi & Wei, Guoxia & Zhao, Hailong & Li, Kai & Weng, Fangkai, 2023. "Energy, environment and economy assessment of sewage sludge incineration technologies in China," Energy, Elsevier, vol. 264(C).
    13. Jankowski, Krzysztof Józef & Kołodziej, Barbara & Dubis, Bogdan & Sugier, Danuta & Antonkiewicz, Jacek & Szatkowski, Artur, 2023. "The effect of sewage sludge on the energy balance of cup plant biomass production. A six-year field experiment in Poland," Energy, Elsevier, vol. 276(C).
    14. Štefan Bojnec & Alan Križaj, 2021. "Electricity Markets during the Liberalization: The Case of a European Union Country," Energies, MDPI, vol. 14(14), pages 1-21, July.
    15. Mariusz Tańczuk & Wojciech Kostowski, 2021. "Technical, Energetic and Economic Optimization Analysis of Selection of Heat Source for Municipal Sewage Sludge Dryer," Energies, MDPI, vol. 14(2), pages 1-16, January.
    16. Li Ma & Li Sha & Xingxin Liu & Shuting Zhang, 2021. "Study of Molding and Drying Characteristics of Compressed Municipal Sludge-Corn Stalk Fuel Pellets," Energies, MDPI, vol. 14(11), pages 1-15, May.
    17. Nicola Di Costanzo & Alessandra Cesaro & Francesco Di Capua & Giovanni Esposito, 2021. "Exploiting the Nutrient Potential of Anaerobically Digested Sewage Sludge: A Review," Energies, MDPI, vol. 14(23), pages 1-25, December.
    18. Tobias Zimmer & Andreas Rudi & Simon Glöser-Chahoud & Frank Schultmann, 2022. "Techno-Economic Analysis of Intermediate Pyrolysis with Solar Drying: A Chilean Case Study," Energies, MDPI, vol. 15(6), pages 1-16, March.
    19. Norbert Miskolczi & Szabina Tomasek, 2022. "Investigation of Pyrolysis Behavior of Sewage Sludge by Thermogravimetric Analysis Coupled with Fourier Transform Infrared Spectrometry Using Different Heating Rates," Energies, MDPI, vol. 15(14), pages 1-18, July.
    20. Jongkeun Lee & Oh Kyung Choi & Dooyoung Oh & Kawnyong Lee & Ki Young Park & Daegi Kim, 2020. "Stimulation of Lipid Extraction Efficiency from Sewage Sludge for Biodiesel Production through Hydrothermal Pretreatment," Energies, MDPI, vol. 13(23), pages 1-10, December.
    21. Hubert Prask & Małgorzata Fugol & Arkadiusz Dyjakon & Liliana Głąb & Józef Sowiński & Alena Whitaker, 2023. "The Impact of Sewage Sludge-Sweet Sorghum Blends on the Biogas Production for Energy Purposes," Energies, MDPI, vol. 16(5), pages 1-11, February.
    22. Oumaima Mabrouk & Helmi Hamdi & Sami Sayadi & Mohammad A. Al-Ghouti & Mohammed H. Abu-Dieyeh & Nabil Zouari, 2023. "Reuse of Sludge as Organic Soil Amendment: Insights into the Current Situation and Potential Challenges," Sustainability, MDPI, vol. 15(8), pages 1-25, April.
    23. Dinko Đurđević & Saša Žiković & Paolo Blecich, 2022. "Sustainable Sewage Sludge Management Technologies Selection Based on Techno-Economic-Environmental Criteria: Case Study of Croatia," Energies, MDPI, vol. 15(11), pages 1-23, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jayne Lois San Juan & Carlo James Caligan & Maria Mikayla Garcia & Jericho Mitra & Andres Philip Mayol & Charlle Sy & Aristotle Ubando & Alvin Culaba, 2020. "Multi-Objective Optimization of an Integrated Algal and Sludge-Based Bioenergy Park and Wastewater Treatment System," Sustainability, MDPI, vol. 12(18), pages 1-22, September.
    2. Shahbeig, Hossein & Nosrati, Mohsen, 2020. "Pyrolysis of municipal sewage sludge for bioenergy production: Thermo-kinetic studies, evolved gas analysis, and techno-socio-economic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    3. Fabio Merzari & Jillian Goldfarb & Gianni Andreottola & Tanja Mimmo & Maurizio Volpe & Luca Fiori, 2020. "Hydrothermal Carbonization as a Strategy for Sewage Sludge Management: Influence of Process Withdrawal Point on Hydrochar Properties," Energies, MDPI, vol. 13(11), pages 1-22, June.
    4. Suraj Adebayo Opatokun & Ana Lopez-Sabiron & German Ferreira & Vladimir Strezov, 2017. "Life Cycle Analysis of Energy Production from Food Waste through Anaerobic Digestion, Pyrolysis and Integrated Energy System," Sustainability, MDPI, vol. 9(10), pages 1-15, October.
    5. Carmen Callao & M. Pilar Latorre & Margarita Martinez-Núñez, 2021. "Understanding Hazardous Waste Exports for Disposal in Europe: A Contribution to Sustainable Development," Sustainability, MDPI, vol. 13(16), pages 1-14, August.
    6. Alberto Carotenuto & Simona Di Fraia & Nicola Massarotti & Szymon Sobek & M. Rakib Uddin & Laura Vanoli & Sebastian Werle, 2023. "Sewage Sludge Gasification Process Optimization for Combined Heat and Power Generation," Energies, MDPI, vol. 16(12), pages 1-22, June.
    7. Carotenuto, Alberto & Di Fraia, Simona & Massarotti, Nicola & Sobek, Szymon & Uddin, M. Rakib & Vanoli, Laura & Werle, Sebastian, 2023. "Predictive modeling for energy recovery from sewage sludge gasification," Energy, Elsevier, vol. 263(PB).
    8. Farhad Beik & Leon Williams & Tim Brown & Stuart T. Wagland, 2021. "Managing Non-Sewered Human Waste Using Thermochemical Waste Treatment Technologies: A Review," Energies, MDPI, vol. 14(22), pages 1-22, November.
    9. Katinas, Vladislovas & Marčiukaitis, Mantas & Perednis, Eugenijus & Dzenajavičienė, Eugenija Farida, 2019. "Analysis of biodegradable waste use for energy generation in Lithuania," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 559-567.
    10. Abdel daiem, Mahmoud M. & Hatata, Ahmed & Galal, Osama H. & Said, Noha & Ahmed, Dalia, 2021. "Prediction of biogas production from anaerobic co-digestion of waste activated sludge and wheat straw using two-dimensional mathematical models and an artificial neural network," Renewable Energy, Elsevier, vol. 178(C), pages 226-240.
    11. Syed-Hassan, Syed Shatir A. & Wang, Yi & Hu, Song & Su, Sheng & Xiang, Jun, 2017. "Thermochemical processing of sewage sludge to energy and fuel: Fundamentals, challenges and considerations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 888-913.
    12. Salah Jellali & Yassine Charabi & Muhammad Usman & Abdullah Al-Badi & Mejdi Jeguirim, 2021. "Investigations on Biogas Recovery from Anaerobic Digestion of Raw Sludge and Its Mixture with Agri-Food Wastes: Application to the Largest Industrial Estate in Oman," Sustainability, MDPI, vol. 13(7), pages 1-20, March.
    13. Broberg, Thomas & Dijkgraaf, Elbert & Meens-Eriksson, Sef, 2022. "Burn or let them bury? The net social cost of producing district heating from imported waste," Energy Economics, Elsevier, vol. 105(C).
    14. Emma Lindkvist & Maria T. Johansson & Jakob Rosenqvist, 2017. "Methodology for Analysing Energy Demand in Biogas Production Plants—A Comparative Study of Two Biogas Plants," Energies, MDPI, vol. 10(11), pages 1-20, November.
    15. Tataraki, Kalliopi G. & Kavvadias, Konstantinos C. & Maroulis, Zacharias B., 2018. "A systematic approach to evaluate the economic viability of Combined Cooling Heating and Power systems over conventional technologies," Energy, Elsevier, vol. 148(C), pages 283-295.
    16. Salman, Chaudhary Awais & Schwede, Sebastian & Thorin, Eva & Yan, Jinyue, 2017. "Enhancing biomethane production by integrating pyrolysis and anaerobic digestion processes," Applied Energy, Elsevier, vol. 204(C), pages 1074-1083.
    17. Ganzoury, Mohamed A. & Allam, Nageh K., 2015. "Impact of nanotechnology on biogas production: A mini-review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1392-1404.
    18. Guiyan Zang & Jianan Zhang & Junxi Jia & Nathaniel Weger & Albert Ratner, 2019. "Clean Poultry Energy System Design Based on Biomass Gasification Technology: Thermodynamic and Economic Analysis," Energies, MDPI, vol. 12(22), pages 1-18, November.
    19. Stergios Vakalis & Konstantinos Moustakas, 2019. "Applications of the 3T Method and the R1 Formula as Efficiency Assessment Tools for Comparing Waste-to-Energy and Landfilling," Energies, MDPI, vol. 12(6), pages 1-11, March.
    20. Luo, Juan & Ma, Rui & Lin, Junhao & Sun, Shichang & Gong, Guojin & Sun, Jiaman & Chen, Yi & Ma, Ning, 2023. "Review of microwave pyrolysis of sludge to produce high quality biogas: Multi-perspectives process optimization and critical issues proposal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:10:p:1927-:d:232773. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.