IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i14p4326-d596554.html
   My bibliography  Save this article

Circuit Breaker Failure Protection Strategy for HVDC Grids

Author

Listed:
  • María José Pérez-Molina

    (Department of Electrical Engineering, University of the Basque Country UPV/EHU, Plaza Ingeniero Torres Quevedo, 1, 48013 Bilbao, Spain)

  • Dunixe Marene Larruskain

    (Department of Electrical Engineering, University of the Basque Country UPV/EHU, Plaza Ingeniero Torres Quevedo, 1, 48013 Bilbao, Spain)

  • Pablo Eguia

    (Department of Electrical Engineering, University of the Basque Country UPV/EHU, Plaza Ingeniero Torres Quevedo, 1, 48013 Bilbao, Spain)

  • Oihane Abarrategi

    (Department of Electrical Engineering, University of the Basque Country UPV/EHU, Plaza Ingeniero Torres Quevedo, 1, 48013 Bilbao, Spain)

Abstract

HVDC grids demand the fast and reliable operation of the protection system. The failure of any protection element should initialize a backup protection almost immediately in order to assure the system’s stability. This paper proposes a novel backup strategy that covers the failure of the primary protection including the malfunctioning of the HVDC circuit breaker. Only local voltage measurements are employed in the proposed backup protection and the voltage derivative is calculated at both sides of the limiting inductor. Consequently, the speed and reliability of the protection system are enhanced, since no communication channel is needed. This paper contains a thorough specification of the proposed protection strategy. This strategy is validated in a four-terminal HVDC grid with various fault case scenarios, including high-resistance fault cases. The operation of the backup protection is reliable and remarkably fast.

Suggested Citation

  • María José Pérez-Molina & Dunixe Marene Larruskain & Pablo Eguia & Oihane Abarrategi, 2021. "Circuit Breaker Failure Protection Strategy for HVDC Grids," Energies, MDPI, vol. 14(14), pages 1-15, July.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:14:p:4326-:d:596554
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/14/4326/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/14/4326/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jingqiu Yu & Zheren Zhang & Zheng Xu, 2020. "A Local Protection and Local Action Strategy of DC Grid Fault Protection," Energies, MDPI, vol. 13(18), pages 1-14, September.
    2. María José Pérez Molina & Dunixe Marene Larruskain & Pablo Eguía López & Agurtzane Etxegarai, 2019. "Analysis of Local Measurement-Based Algorithms for Fault Detection in a Multi-Terminal HVDC Grid," Energies, MDPI, vol. 12(24), pages 1-20, December.
    3. Van Quan Dao & Jae-In Lee & Chang Soon Kim & Minwon Park & Umberto Melaccio, 2020. "Design and Performance Analysis of a Saturated Iron-Core Superconducting Fault Current Limiter for DC Power Systems," Energies, MDPI, vol. 13(22), pages 1-18, November.
    4. Perez-Molina, M.J. & Larruskain, D.M. & Eguia Lopez, P. & Buigues, G. & Valverde, V., 2021. "Review of protection systems for multi-terminal high voltage direct current grids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rodolfo Araneo & Salvatore Celozzi & Stefano Lauria & Erika Stracqualursi & Gianfranco Di Lorenzo & Marco Graziani, 2022. "Recent Trends in Power Systems Modeling and Analysis," Energies, MDPI, vol. 15(23), pages 1-7, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sahebkar Farkhani, Jalal & Çelik, Özgür & Ma, Kaiqi & Bak, Claus Leth & Chen, Zhe, 2024. "A comprehensive review of potential protection methods for VSC multi-terminal HVDC systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    2. Francisco Ferreira da Silva & João F. P. Fernandes & Paulo José da Costa Branco, 2022. "Superconducting Electric Power Systems: R&D Advancements," Energies, MDPI, vol. 15(19), pages 1-10, October.
    3. Yin, Linfei & He, Xiaoyu, 2023. "Artificial emotional deep Q learning for real-time smart voltage control of cyber-physical social power systems," Energy, Elsevier, vol. 273(C).
    4. Andrei Stan & Sorina Costinaș & Georgiana Ion, 2022. "Overview and Assessment of HVDC Current Applications and Future Trends," Energies, MDPI, vol. 15(3), pages 1-25, February.
    5. Jae-In Lee & Van Quan Dao & Minh-Chau Dinh & Seok-ju Lee & Chang Soon Kim & Minwon Park, 2021. "Combined Operation Analysis of a Saturated Iron-Core Superconducting Fault Current Limiter and Circuit Breaker for an HVDC System Protection," Energies, MDPI, vol. 14(23), pages 1-18, November.
    6. Shuhao Liu & Kunlun Han & Hongzheng Li & Tengyue Zhang & Fengyuan Chen, 2023. "A Two-Terminal Directional Protection Method for HVDC Transmission Lines of Current Fault Component Based on Improved VMD-Hilbert Transform," Energies, MDPI, vol. 16(19), pages 1-21, October.
    7. Adam Dyśko & Dimitrios Tzelepis, 2022. "Protection of Future Electricity Systems," Energies, MDPI, vol. 15(3), pages 1-2, January.
    8. Rodolfo Araneo & Salvatore Celozzi & Stefano Lauria & Erika Stracqualursi & Gianfranco Di Lorenzo & Marco Graziani, 2022. "Recent Trends in Power Systems Modeling and Analysis," Energies, MDPI, vol. 15(23), pages 1-7, December.
    9. Abha Pragati & Manohar Mishra & Pravat Kumar Rout & Debadatta Amaresh Gadanayak & Shazia Hasan & B. Rajanarayan Prusty, 2023. "A Comprehensive Survey of HVDC Protection System: Fault Analysis, Methodology, Issues, Challenges, and Future Perspective," Energies, MDPI, vol. 16(11), pages 1-39, May.
    10. Kwang-Hoon Yoon & Joong-Woo Shin & Jae-Chul Kim & Hyeong-Jin Lee & Jin-Seok Kim, 2022. "Simulation of a Low-Voltage Direct Current System Using T-SFCL to Enhance Low Voltage Ride through Capability," Energies, MDPI, vol. 15(6), pages 1-11, March.
    11. Sangyong Park & Hyosang Choi, 2020. "Operation Characteristics for the Superconducting Arc-Induction Type DC Circuit Breaker," Energies, MDPI, vol. 13(15), pages 1-13, July.
    12. Perez-Molina, M.J. & Larruskain, D.M. & Eguia Lopez, P. & Buigues, G. & Valverde, V., 2021. "Review of protection systems for multi-terminal high voltage direct current grids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:14:p:4326-:d:596554. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.