IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i18p4795-d413357.html
   My bibliography  Save this article

A Local Protection and Local Action Strategy of DC Grid Fault Protection

Author

Listed:
  • Jingqiu Yu

    (Department of Electrical Engineering, Zhejiang University, Hangzhou 310058, China)

  • Zheren Zhang

    (Department of Electrical Engineering, Zhejiang University, Hangzhou 310058, China)

  • Zheng Xu

    (Department of Electrical Engineering, Zhejiang University, Hangzhou 310058, China)

Abstract

Fast detection and isolation of direct current (DC) faults are key issues for DC grids. Therefore, it is very necessary to study the fault protection principle for DC grids. This paper firstly presents the main difficulties in DC fault protection. Then, a local protection and local action strategy for isolating the DC faults is proposed. To illustrate the performance of the proposed protection strategy, a four-terminal DC grid with the hybrid high voltage direct current (HVDC) circuit breakers (HVDC CBs) is constructed in the time-domain simulation software PSCAD/EMTDC as the test system. The systematical comparison between the ordinary protection strategy and the proposed strategy is carried out. The protection selectivity of the proposed local detection and local action strategy is thoroughly studied through complete DC line fault scanning of the test system. The simulation results show that the proposed strategy is of high protection selectivity and speed. In addition, the current rating and the voltage of HVDC CB could be greatly reduced with the proposed strategy, which proves the economic benefits of the proposed strategy.

Suggested Citation

  • Jingqiu Yu & Zheren Zhang & Zheng Xu, 2020. "A Local Protection and Local Action Strategy of DC Grid Fault Protection," Energies, MDPI, vol. 13(18), pages 1-14, September.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4795-:d:413357
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/18/4795/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/18/4795/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. María José Pérez-Molina & Dunixe Marene Larruskain & Pablo Eguia & Oihane Abarrategi, 2021. "Circuit Breaker Failure Protection Strategy for HVDC Grids," Energies, MDPI, vol. 14(14), pages 1-15, July.
    2. Adam Dyśko & Dimitrios Tzelepis, 2022. "Protection of Future Electricity Systems," Energies, MDPI, vol. 15(3), pages 1-2, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4795-:d:413357. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.