IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v146y2020icp1177-1191.html
   My bibliography  Save this article

Long-term performance and life cycle assessment of energy piles in three different climatic conditions

Author

Listed:
  • Sutman, Melis
  • Speranza, Gianluca
  • Ferrari, Alessio
  • Larrey-Lassalle, Pyrène
  • Laloui, Lyesse

Abstract

The main purpose behind the use of energy piles is to enable the exploitation of geothermal energy for meeting the heating/cooling demands of buildings in an efficient and environment-friendly manner. However, the long-term performance of energy piles in different climatic conditions, along with their actual environmental impacts, has not been fully assessed. In this paper, the results of a finite element model taking into consideration the heating and cooling demands of a reference building, and the intermittent operation of a ground source heat pump, are revealed to examine the long-term performance of energy piles. Furthermore, a life cycle assessment model is implemented to compare the environmental performance of energy piles and a group of conventional piles. The environmental enhancement provided by the adoption of a ground source heat pump system is quantified with respect to a conventional heating and cooling system. The obtained results show that (i) the energy pile system can meet the majority of the heating/cooling demands, except during the peak demands, (ii) the geothermal operation results in temperature fluctuations within the energy piles and the soil, (iii) the use of energy piles results in a significant reduction in environmental impacts in the majority of the examined cases.

Suggested Citation

  • Sutman, Melis & Speranza, Gianluca & Ferrari, Alessio & Larrey-Lassalle, Pyrène & Laloui, Lyesse, 2020. "Long-term performance and life cycle assessment of energy piles in three different climatic conditions," Renewable Energy, Elsevier, vol. 146(C), pages 1177-1191.
  • Handle: RePEc:eee:renene:v:146:y:2020:i:c:p:1177-1191
    DOI: 10.1016/j.renene.2019.07.035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119310559
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.07.035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kong, Gangqiang & Dai, Guohao & Zhou, Yang & Yang, Qing, 2024. "Analytical solution model of heat transfer for energy soldier piles during excavation to backfilling," Renewable Energy, Elsevier, vol. 226(C).
    2. Ng, C.W.W. & Farivar, A. & Gomaa, S.M.M.H. & Shakeel, M. & Jafarzadeh, F., 2021. "Performance of elevated energy pile groups with different pile spacing in clay subjected to cyclic non-symmetrical thermal loading," Renewable Energy, Elsevier, vol. 172(C), pages 998-1012.
    3. Hanson, James L. & Onnen, Michael T. & Yeşiller, Nazlı & Kopp, Kevin B., 2022. "Heat energy potential of municipal solid waste landfills: Review of heat generation and assessment of vertical extraction systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    4. Heidari, Bahareh & Akbari Garakani, Amir & Mokhtari Jozani, Sahar & Hashemi Tari, Pooyan, 2022. "Energy piles under lateral loading: Analytical and numerical investigations," Renewable Energy, Elsevier, vol. 182(C), pages 172-191.
    5. Abubakar Kawuwa Sani & Rao Martand Singh, 2021. "Long-Term Thermal Performance of Group of Energy Piles in Unsaturated Soils under Cyclic Thermal Loading," Energies, MDPI, vol. 14(14), pages 1-28, July.
    6. Aresti, Lazaros & Christodoulides, Paul & Florides, Georgios A., 2021. "An investigation on the environmental impact of various Ground Heat Exchangers configurations," Renewable Energy, Elsevier, vol. 171(C), pages 592-605.
    7. ten Bosch, Sofie & Ravera, Elena & Laloui, Lyesse, 2024. "Performance of energy piles foundation in hot-dominated climate: A case study in Dubai," Renewable Energy, Elsevier, vol. 220(C).
    8. Pei, Huafu & Song, Huaibo & Meng, Fanhua & Liu, Weiling, 2022. "Long-term thermomechanical displacement prediction of energy piles using machine learning techniques," Renewable Energy, Elsevier, vol. 195(C), pages 620-636.
    9. Pouria Abbasi & Masih Alavy & Pavel Belansky & Marc A. Rosen, 2024. "Assessment of Environmental Impacts of Thermal Caisson Geothermal Systems," Resources, MDPI, vol. 13(3), pages 1-22, March.
    10. Abdelazim Abbas Ahmed & Mohsen Assadi & Adib Kalantar & Tomasz Sliwa & Aneta Sapińska-Śliwa, 2022. "A Critical Review on the Use of Shallow Geothermal Energy Systems for Heating and Cooling Purposes," Energies, MDPI, vol. 15(12), pages 1-22, June.
    11. Li, Renrong & Kong, Gangqiang & Sun, Guangchao & Zhou, Yang & Yang, Qing, 2021. "Thermomechanical characteristics of an energy pile-raft foundation under heating operations," Renewable Energy, Elsevier, vol. 175(C), pages 580-592.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:146:y:2020:i:c:p:1177-1191. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.