IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v147y2020ip2p2618-2632.html
   My bibliography  Save this article

Response of unsaturated soils to heating of geothermal energy pile

Author

Listed:
  • Sani, Abubakar Kawuwa
  • Singh, Rao Martand

Abstract

Geothermal energy piles (GEPs) are an environmentally friendly heat exchange technology that dualizes the role of structural foundation pile for load support and in meeting the building heating/cooling need. Energy loops made from high-density polyethylene which allow heat carrier fluid circulation, are fitted into the pile foundation elements to extract or inject and store heat energy in the soil surrounding the pile. This paper reports the results of a numerical study investigating the response of an energy pile embedded in unsaturated soils (sand, silt and clay) to natural thermal recovery, after heat injection process. It was found that the increase in soil saturation, duration of heating operation i.e. intermittent (8 or 16 h heating) or continuous mode, magnitude of the heat injection rates influences the temperature changes in the soil surrounding the pile, consequently impacting on the system performance. Similarly, it was observed that temperature at all location approached initial state in a duration equal to about twice that of the heating time. In addition, it was found that imposing excessive heat flux on the pile results in the drying up of the surrounding soil leading to lower thermal conductivity thus decreasing the overall GEP system performance.

Suggested Citation

  • Sani, Abubakar Kawuwa & Singh, Rao Martand, 2020. "Response of unsaturated soils to heating of geothermal energy pile," Renewable Energy, Elsevier, vol. 147(P2), pages 2618-2632.
  • Handle: RePEc:eee:renene:v:147:y:2020:i:p2:p:2618-2632
    DOI: 10.1016/j.renene.2018.11.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014811831351X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.11.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cecinato, Francesco & Loveridge, Fleur A., 2015. "Influences on the thermal efficiency of energy piles," Energy, Elsevier, vol. 82(C), pages 1021-1033.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhi Chen & Bo Wang & Lifei Zheng & Henglin Xiao & Jingquan Wang, 2021. "Research on Heat Exchange Law and Structural Design Optimization of Deep Buried Pipe Energy Piles," Energies, MDPI, vol. 14(20), pages 1-19, October.
    2. Cunha, R.P. & Bourne-Webb, P.J., 2022. "A critical review on the current knowledge of geothermal energy piles to sustainably climatize buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    3. Cherati, Davood Yazdani & Ghasemi-Fare, Omid, 2021. "Practical approaches for implementation of energy piles in Iran based on the lessons learned from the developed countries experiences," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    4. Abubakar Kawuwa Sani & Rao Martand Singh, 2021. "Long-Term Thermal Performance of Group of Energy Piles in Unsaturated Soils under Cyclic Thermal Loading," Energies, MDPI, vol. 14(14), pages 1-28, July.
    5. Ma, Qijie & Wang, Peijun & Fan, Jianhua & Klar, Assaf, 2022. "Underground solar energy storage via energy piles: An experimental study," Applied Energy, Elsevier, vol. 306(PB).
    6. Bao, Xiaohua & Qi, Xuedong & Cui, Hongzhi & Tang, Waiching & Chen, Xiangsheng, 2022. "Experimental study on thermal response of a PCM energy pile in unsaturated clay," Renewable Energy, Elsevier, vol. 185(C), pages 790-803.
    7. Cao, Ziming & Zhang, Guozhu & Liu, Yiping & Zhao, Xu & Li, Chenglin, 2022. "Influence of backfilling phase change material on thermal performance of precast high-strength concrete energy pile," Renewable Energy, Elsevier, vol. 184(C), pages 374-390.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ana Vieira & Maria Alberdi-Pagola & Paul Christodoulides & Saqib Javed & Fleur Loveridge & Frederic Nguyen & Francesco Cecinato & João Maranha & Georgios Florides & Iulia Prodan & Gust Van Lysebetten , 2017. "Characterisation of Ground Thermal and Thermo-Mechanical Behaviour for Shallow Geothermal Energy Applications," Energies, MDPI, vol. 10(12), pages 1-51, December.
    2. Gao, Jiajia & Li, Anbang & Xu, Xinhua & Gang, Wenjie & Yan, Tian, 2018. "Ground heat exchangers: Applications, technology integration and potentials for zero energy buildings," Renewable Energy, Elsevier, vol. 128(PA), pages 337-349.
    3. Somogyi, Viola & Sebestyén, Viktor & Nagy, Georgina, 2017. "Scientific achievements and regulation of shallow geothermal systems in six European countries – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 934-952.
    4. Li, Renrong & Kong, Gangqiang & Sun, Guangchao & Zhou, Yang & Yang, Qing, 2021. "Thermomechanical characteristics of an energy pile-raft foundation under heating operations," Renewable Energy, Elsevier, vol. 175(C), pages 580-592.
    5. Andrea Ferrantelli & Jevgeni Fadejev & Jarek Kurnitski, 2019. "Energy Pile Field Simulation in Large Buildings: Validation of Surface Boundary Assumptions," Energies, MDPI, vol. 12(5), pages 1-20, February.
    6. Cunha, R.P. & Bourne-Webb, P.J., 2022. "A critical review on the current knowledge of geothermal energy piles to sustainably climatize buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    7. Zhao, Qiang & Chen, Baoming & Tian, Maocheng & Liu, Fang, 2018. "Investigation on the thermal behavior of energy piles and borehole heat exchangers: A case study," Energy, Elsevier, vol. 162(C), pages 787-797.
    8. Barla, Marco & Di Donna, Alice & Santi, Alessandro, 2020. "Energy and mechanical aspects on the thermal activation of diaphragm walls for heating and cooling," Renewable Energy, Elsevier, vol. 147(P2), pages 2654-2663.
    9. Ayaz, Hassam & Faizal, Mohammed & Bouazza, Abdelmalek, 2024. "Energy, economic, and carbon emission analysis of a residential building with an energy pile system," Renewable Energy, Elsevier, vol. 220(C).
    10. Ding, Xuanming & Peng, Chen & Wang, Chenglong & Kong, Gangqiang, 2022. "Heat transfer performance of energy piles in seasonally frozen soil areas," Renewable Energy, Elsevier, vol. 190(C), pages 903-918.
    11. Cardoso de Freitas Murari, Milena & de Hollanda Cavalcanti Tsuha, Cristina & Loveridge, Fleur, 2022. "Investigation on the thermal response of steel pipe energy piles with different backfill materials," Renewable Energy, Elsevier, vol. 199(C), pages 44-61.
    12. Maragna, Charles & Loveridge, Fleur, 2019. "A resistive-capacitive model of pile heat exchangers with an application to thermal response tests interpretation," Renewable Energy, Elsevier, vol. 138(C), pages 891-910.
    13. Sani, Abubakar Kawuwa & Singh, Rao Martand & Amis, Tony & Cavarretta, Ignazio, 2019. "A review on the performance of geothermal energy pile foundation, its design process and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 106(C), pages 54-78.
    14. Bao, Xiaohua & Qi, Xuedong & Cui, Hongzhi & Tang, Waiching & Chen, Xiangsheng, 2022. "Experimental study on thermal response of a PCM energy pile in unsaturated clay," Renewable Energy, Elsevier, vol. 185(C), pages 790-803.
    15. Alberdi-Pagola, Maria & Poulsen, Søren Erbs & Jensen, Rasmus Lund & Madsen, Søren, 2020. "A case study of the sizing and optimisation of an energy pile foundation (Rosborg, Denmark)," Renewable Energy, Elsevier, vol. 147(P2), pages 2724-2735.
    16. Pan, Aiqiang & McCartney, John S. & Lu, Lin & You, Tian, 2020. "A novel analytical multilayer cylindrical heat source model for vertical ground heat exchangers installed in layered ground," Energy, Elsevier, vol. 200(C).
    17. Ogunleye, Oluwaseun & Singh, Rao Martand & Cecinato, Francesco & Chan Choi, Jung, 2020. "Effect of intermittent operation on the thermal efficiency of energy tunnels under varying tunnel air temperature," Renewable Energy, Elsevier, vol. 146(C), pages 2646-2658.
    18. Aresti, Lazaros & Alvi, Maria Romana & Cecinato, Francesco & Fan, Tao & Halaj, Elzbieta & Li, Zili & Okhay, Olena & Poulsen, Soren Erbs & Quiroga, Sonia & Suarez, Cristina & Tang, Anh Minh & Valancius, 2024. "Energy geo-structures: A review of their integration with other sources and its limitations," Renewable Energy, Elsevier, vol. 230(C).
    19. Dai, Quanwei & Rotta Loria, Alessandro F. & Choo, Jinhyun, 2022. "Effects of internal airflows on the heat exchange potential and mechanics of energy walls," Renewable Energy, Elsevier, vol. 197(C), pages 1069-1080.
    20. Cao, Ziming & Zhang, Guozhu & Liu, Yiping & Zhao, Xu & Li, Chenglin, 2022. "Influence of backfilling phase change material on thermal performance of precast high-strength concrete energy pile," Renewable Energy, Elsevier, vol. 184(C), pages 374-390.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:147:y:2020:i:p2:p:2618-2632. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.