IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i14p4069-d589125.html
   My bibliography  Save this article

Assessment of Sensitivity to Evaluate the Impact of Operating Parameters on Stability and Performance in Proton Exchange Membrane Fuel Cells

Author

Listed:
  • Mingzhang Pan

    (College of Mechanical Engineering, Guangxi University, Nanning 530004, China
    Guangxi Key Laboratory of Electrochemical Energy Materials, Nanning 530004, China)

  • Chengjie Pan

    (College of Mechanical Engineering, Guangxi University, Nanning 530004, China)

  • Jinyang Liao

    (College of Mechanical Engineering, Guangxi University, Nanning 530004, China)

  • Chao Li

    (College of Mechanical Engineering, Guangxi University, Nanning 530004, China)

  • Rong Huang

    (Postdoctoral Station of Mechanical Engineering, School of Automotive Studies, Tongji University, Shanghai 200092, China)

  • Qiwei Wang

    (Postdoctoral Station of Mechanical Engineering, School of Automotive Studies, Tongji University, Shanghai 200092, China)

Abstract

As a highly nonlinear system, the performance of proton exchange membrane fuel cell (PEMFC) is controlled by various parameters. If the effects of all parameters are considered during the performance optimization, low working efficiency and waste of resources will be caused. The development of sensitivity analysis for parameters can not only exclude the parameters which have slight effects on the system, but also provide the reasonable setting ranges of boundary values for simulation of performance optimization. Therefore, sensitivity analysis of parameters is considered as one of the methods to optimize the fuel cell performance. According to the actual operating conditions of PEMFC, the fluctuation ranges of seven sets of parameters affecting the output performance of PEMFC are determined, namely cell operating temperature, anode/cathode temperature, anode/cathode pressure, and anode/cathode mass flow rate. Then, the control variable method is used to qualitatively analyze the sensitivity of main parameters and combines with the Monte Carlo method to obtain the sensitivity indexes of the insensitive parameters under the specified current density. The results indicate that among these parameters, the working temperature of the fuel cell is the most sensitive to the output performance under all working conditions, whereas the inlet temperature is the least sensitive within the range of deviation. Moreover, the cloud maps of water content distribution under the fluctuation of three more sensitive parameters are compared; the results verify the simulated data and further reveal the reasons for performance changes. The workload of PEMFC performance optimization will be reduced based on the obtained results.

Suggested Citation

  • Mingzhang Pan & Chengjie Pan & Jinyang Liao & Chao Li & Rong Huang & Qiwei Wang, 2021. "Assessment of Sensitivity to Evaluate the Impact of Operating Parameters on Stability and Performance in Proton Exchange Membrane Fuel Cells," Energies, MDPI, vol. 14(14), pages 1-23, July.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:14:p:4069-:d:589125
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/14/4069/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/14/4069/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kim, Jintae & Kim, Minjin & Kang, Taegon & Sohn, Young-Jun & Song, Taewon & Choi, Kyoung Hwan, 2014. "Degradation modeling and operational optimization for improving the lifetime of high-temperature PEM (proton exchange membrane) fuel cells," Energy, Elsevier, vol. 66(C), pages 41-49.
    2. Abdin, Z. & Webb, C.J. & Gray, E.MacA., 2016. "PEM fuel cell model and simulation in Matlab–Simulink based on physical parameters," Energy, Elsevier, vol. 116(P1), pages 1131-1144.
    3. Ko, Donggun & Doh, Seungwoo & Park, Hyun Sun & Kim, Moo Hwan, 2018. "Investigation of the effect of operating pressure on the performance of proton exchange membrane fuel cell: In the aspect of water distribution," Renewable Energy, Elsevier, vol. 115(C), pages 896-907.
    4. Chen, Huicui & Liu, Biao & Zhang, Tong & Pei, Pucheng, 2019. "Influencing sensitivities of critical operating parameters on PEMFC output performance and gas distribution quality under different electrical load conditions," Applied Energy, Elsevier, vol. 255(C).
    5. Movahedi, M. & Ramiar, A. & Ranjber, A.A., 2018. "3D numerical investigation of clamping pressure effect on the performance of proton exchange membrane fuel cell with interdigitated flow field," Energy, Elsevier, vol. 142(C), pages 617-632.
    6. Zhang, Qian & Lin, Rui & Técher, Ludovic & Cui, Xin, 2016. "Experimental study of variable operating parameters effects on overall PEMFC performance and spatial performance distribution," Energy, Elsevier, vol. 115(P1), pages 550-560.
    7. Meidanshahi, Vida & Karimi, Gholamreza, 2012. "Dynamic modeling, optimization and control of power density in a PEM fuel cell," Applied Energy, Elsevier, vol. 93(C), pages 98-105.
    8. Chavan, Sudarshan L. & Talange, Dhananjay B., 2017. "Modeling and performance evaluation of PEM fuel cell by controlling its input parameters," Energy, Elsevier, vol. 138(C), pages 437-445.
    9. Abed Alaswad & Abdelnasir Omran & Jose Ricardo Sodre & Tabbi Wilberforce & Gianmichelle Pignatelli & Michele Dassisti & Ahmad Baroutaji & Abdul Ghani Olabi, 2020. "Technical and Commercial Challenges of Proton-Exchange Membrane (PEM) Fuel Cells," Energies, MDPI, vol. 14(1), pages 1-21, December.
    10. Wu, Horng-Wen & Shih, Gin-Jang & Chen, Yi-Bin, 2018. "Effect of operational parameters on transport and performance of a PEM fuel cell with the best protrusive gas diffusion layer arrangement," Applied Energy, Elsevier, vol. 220(C), pages 47-58.
    11. Yang, Zirong & Du, Qing & Jia, Zhiwei & Yang, Chunguang & Jiao, Kui, 2019. "Effects of operating conditions on water and heat management by a transient multi-dimensional PEMFC system model," Energy, Elsevier, vol. 183(C), pages 462-476.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Najmi, Aezid-Ul-Hassan & Anyanwu, Ikechukwu S. & Xie, Xu & Liu, Zhi & Jiao, Kui, 2021. "Experimental investigation and optimization of proton exchange membrane fuel cell using different flow fields," Energy, Elsevier, vol. 217(C).
    2. Abdollahipour, Armin & Sayyaadi, Hoseyn, 2022. "A novel electrochemical refrigeration system based on the combined proton exchange membrane fuel cell-electrolyzer," Applied Energy, Elsevier, vol. 316(C).
    3. El-Hay, Enas A. & El-Hameed, Mohamed A. & El-Fergany, Attia A., 2018. "Performance enhancement of autonomous system comprising proton exchange membrane fuel cells and switched reluctance motor," Energy, Elsevier, vol. 163(C), pages 699-711.
    4. Lu Zhang & Yongfeng Liu & Pucheng Pei & Xintong Liu & Long Wang & Yuan Wan, 2022. "Variation Characteristic Analysis of Water Content at the Flow Channel of Proton Exchange Membrane Fuel Cell," Energies, MDPI, vol. 15(9), pages 1-20, April.
    5. Chen, Ke & Luo, Zongkai & Zou, Guofu & He, Dandi & Xiong, Zhongzhuang & Zhou, Yu & Chen, Ben, 2024. "Multi-objective optimization of gradient gas diffusion layer structures for enhancing proton exchange membrane fuel cell performance based on response surface methodology and non-dominated sorting gen," Energy, Elsevier, vol. 288(C).
    6. Zhao, Jian & Ozden, Adnan & Shahgaldi, Samaneh & Alaefour, Ibrahim E. & Li, Xianguo & Hamdullahpur, Feridun, 2018. "Effect of Pt loading and catalyst type on the pore structure of porous electrodes in polymer electrolyte membrane (PEM) fuel cells," Energy, Elsevier, vol. 150(C), pages 69-76.
    7. Jiang, Wei & Zhang, Kai & Huang, Xing & Cai, Zhen & Zheng, Jinjin & Kai, Yue & Zheng, Bailin & Song, Ke, 2024. "Influence of clamping pressure on contact pressure uniformity and electrical output performance of proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 353(PA).
    8. Vu, Hoang Nghia & Truong Le Tri, Dat & Nguyen, Huu Linh & Kim, Younghyeon & Yu, Sangseok, 2023. "Multifunctional bypass valve for water management and surge protection in a proton-exchange membrane fuel cell supply-air system," Energy, Elsevier, vol. 278(C).
    9. Guan, Dong & Pan, Biyu & Chen, Zhen & Li, Jing & Shen, Hui & Pang, Huan, 2023. "Quantitative modeling and bio-inspired optimization the clamping load on the bipolar plate in PEMFC," Energy, Elsevier, vol. 263(PD).
    10. Pan, Mingzhang & Pan, Chengjie & Li, Chao & Zhao, Jian, 2021. "A review of membranes in proton exchange membrane fuel cells: Transport phenomena, performance and durability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    11. Chen, Dongfang & Pei, Pucheng & Meng, Yining & Ren, Peng & Li, Yuehua & Wang, Mingkai & Wang, Xizhong, 2022. "Novel extraction method of working condition spectrum for the lifetime prediction and energy management strategy evaluation of automotive fuel cells," Energy, Elsevier, vol. 255(C).
    12. Yan, Xiaohui & Lin, Chen & Zheng, Zhifeng & Chen, Junren & Wei, Guanghua & Zhang, Junliang, 2020. "Effect of clamping pressure on liquid-cooled PEMFC stack performance considering inhomogeneous gas diffusion layer compression," Applied Energy, Elsevier, vol. 258(C).
    13. Jongbin Woo & Younghyeon Kim & Sangseok Yu, 2023. "Cooling-System Configurations of a Dual-Stack Fuel-Cell System for Medium-Duty Trucks," Energies, MDPI, vol. 16(5), pages 1-19, February.
    14. Tolj, Ivan & Penga, Željko & Vukičević, Damir & Barbir, Frano, 2020. "Thermal management of edge-cooled 1 kW portable proton exchange membrane fuel cell stack," Applied Energy, Elsevier, vol. 257(C).
    15. Liu, Jiaran & Tan, Jinzhu & Yang, Weizhan & Li, Yang & Wang, Chao, 2021. "Better electrochemical performance of PEMFC under a novel pneumatic clamping mechanism," Energy, Elsevier, vol. 229(C).
    16. Atyabi, Seyed Ali & Afshari, Ebrahim & Wongwises, Somchai & Yan, Wen-Mon & Hadjadj, Abdellah & Shadloo, Mostafa Safdari, 2019. "Effects of assembly pressure on PEM fuel cell performance by taking into accounts electrical and thermal contact resistances," Energy, Elsevier, vol. 179(C), pages 490-501.
    17. Zhao, Jian & Li, Xianguo & Shum, Chris & McPhee, John, 2023. "Control-oriented computational fuel cell dynamics modeling – Model order reduction vs. computational speed," Energy, Elsevier, vol. 266(C).
    18. Zili Wang & Guodong Yi & Shaoju Zhang, 2021. "An Improved Fuzzy PID Control Method Considering Hydrogen Fuel Cell Voltage-Output Characteristics for a Hydrogen Vehicle Power System," Energies, MDPI, vol. 14(19), pages 1-18, September.
    19. El-Hay, E.A. & El-Hameed, M.A. & El-Fergany, A.A., 2019. "Optimized Parameters of SOFC for steady state and transient simulations using interior search algorithm," Energy, Elsevier, vol. 166(C), pages 451-461.
    20. Wang, Ya-Xiong & Chen, Quan & Zhang, Jin & He, Hongwen, 2021. "Real-time power optimization for an air-coolant proton exchange membrane fuel cell based on active temperature control," Energy, Elsevier, vol. 220(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:14:p:4069-:d:589125. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.