IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i13p3726-d579470.html
   My bibliography  Save this article

Modelling the Effects of Traffic-Calming Introduction to Volume–Delay Functions and Traffic Assignment

Author

Listed:
  • Jan Paszkowski

    (Politechnika Krakowska, ul. Warszawska 24, 31-155 Kraków, Poland
    Westsächsische Hochschule Zwickau, Kornmarkt 1, 08056 Zwickau, Germany)

  • Marcus Herrmann

    (Westsächsische Hochschule Zwickau, Kornmarkt 1, 08056 Zwickau, Germany)

  • Matthias Richter

    (Westsächsische Hochschule Zwickau, Kornmarkt 1, 08056 Zwickau, Germany)

  • Andrzej Szarata

    (Politechnika Krakowska, ul. Warszawska 24, 31-155 Kraków, Poland)

Abstract

Traffic calming is introduced to minimise the negative results of motor vehicle use, for example, low safety level or quality of life, high noise and pollution. It can be implemented through the introduction of road infrastructure reducing the velocity and the traffic volume. In this paper, we studied how traffic-calming influences the traffic assignment. For the research, a traffic-calming measure of speed cushions on the Stachiewicza street in Krakow was taken. A method of extracting trajectories from aerial footage was shown, and it was used to build a model. For a given example, through driving characteristics research and microscopic modelling, volume–delay BPR functions were estimated—for a street with and without traffic calming. Later, a toy network of two roads of the same length, connecting the same origin and destination, was simulated using an equilibrium traffic assignment method. Simulations were conducted both with the use of PTV Vissim and Visum software and through individual calculations. According to the results of this paper, there was a difference in traffic volume according to the equilibrium traffic assignment in the aforementioned toy network as a function of total network traffic volume.

Suggested Citation

  • Jan Paszkowski & Marcus Herrmann & Matthias Richter & Andrzej Szarata, 2021. "Modelling the Effects of Traffic-Calming Introduction to Volume–Delay Functions and Traffic Assignment," Energies, MDPI, vol. 14(13), pages 1-18, June.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:13:p:3726-:d:579470
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/13/3726/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/13/3726/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Denos C. Gazis & Robert Herman & Richard W. Rothery, 1961. "Nonlinear Follow-the-Leader Models of Traffic Flow," Operations Research, INFORMS, vol. 9(4), pages 545-567, August.
    2. Florian, Michael & Gaudry, Marc & Lardinois, Christian, 1988. "A two-dimensional framework for the understanding of transportation planning models," Transportation Research Part B: Methodological, Elsevier, vol. 22(6), pages 411-419, December.
    3. G. F. Newell, 1961. "Nonlinear Effects in the Dynamics of Car Following," Operations Research, INFORMS, vol. 9(2), pages 209-229, April.
    4. Daganzo, Carlos F. & Geroliminis, Nikolas, 2008. "An analytical approximation for the macroscopic fundamental diagram of urban traffic," Transportation Research Part B: Methodological, Elsevier, vol. 42(9), pages 771-781, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giuseppe Cantisani & Maria Vittoria Corazza & Paola Di Mascio & Laura Moretti, 2023. "Eight Traffic Calming “Easy Pieces” to Shape the Everyday Pedestrian Realm," Sustainability, MDPI, vol. 15(10), pages 1-22, May.
    2. Elżbieta Macioszek & Anna Granà & Paulo Fernandes & Margarida C. Coelho, 2022. "New Perspectives and Challenges in Traffic and Transportation Engineering Supporting Energy Saving in Smart Cities—A Multidisciplinary Approach to a Global Problem," Energies, MDPI, vol. 15(12), pages 1-8, June.
    3. Maksymilian Mądziel, 2023. "Vehicle Emission Models and Traffic Simulators: A Review," Energies, MDPI, vol. 16(9), pages 1-31, May.
    4. Heriberto Pérez-Acebo & Robert Ziolkowski & Hernán Gonzalo-Orden, 2021. "Evaluation of the Radar Speed Cameras and Panels Indicating the Vehicles’ Speed as Traffic Calming Measures (TCM) in Short Length Urban Areas Located along Rural Roads," Energies, MDPI, vol. 14(23), pages 1-17, December.
    5. Nicola Berloco & Stefano Coropulis & Giuseppe Garofalo & Paolo Intini & Vittorio Ranieri, 2023. "Analysis of the Factors Influencing Speed Cushion Effectiveness in the Urban Context: A Case Study Experiment in the City of Bari, Italy," Sustainability, MDPI, vol. 15(8), pages 1-21, April.
    6. Alicja Sołowczuk, 2021. "Effect of Traffic Calming in a Downtown District of Szczecin, Poland," Energies, MDPI, vol. 14(18), pages 1-21, September.
    7. Jindong Wang & Jianguo Ying & Shengchuan Jiang, 2022. "An Adaptive Traffic-Calming Measure and Effectiveness Evaluation in a Large Urban Complex of Shanghai, China," Sustainability, MDPI, vol. 14(20), pages 1-10, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Qixiu & Liu, Zhiyuan & Lin, Yuqian & Zhou, Xuesong (Simon), 2021. "An s-shaped three-parameter (S3) traffic stream model with consistent car following relationship," Transportation Research Part B: Methodological, Elsevier, vol. 153(C), pages 246-271.
    2. Li, Xiaopeng & Wang, Xin & Ouyang, Yanfeng, 2012. "Prediction and field validation of traffic oscillation propagation under nonlinear car-following laws," Transportation Research Part B: Methodological, Elsevier, vol. 46(3), pages 409-423.
    3. Wang, Xiao & Jiang, Rui & Li, Li & Lin, Yi-Lun & Wang, Fei-Yue, 2019. "Long memory is important: A test study on deep-learning based car-following model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 786-795.
    4. Zhang, H.M. & Kim, T., 2005. "A car-following theory for multiphase vehicular traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 39(5), pages 385-399, June.
    5. Kaur, Ramanpreet & Sharma, Sapna, 2018. "Modeling and simulation of driver’s anticipation effect in a two lane system on curved road with slope," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 110-120.
    6. Yifan Pan & Yongjiang Wang & Baobin Miao & Rongjun Cheng, 2022. "Stabilization Strategy of a Novel Car-Following Model with Time Delay and Memory Effect of the Driver," Sustainability, MDPI, vol. 14(12), pages 1-20, June.
    7. Xiangyang Cao & Bingzhong Zhou & Qiang Tang & Jiaqi Li & Donghui Shi, 2018. "Urban Wasteful Transport and Its Estimation Methods," Sustainability, MDPI, vol. 10(12), pages 1-15, December.
    8. Hongxing Zhao & Ruichun He & Xiaoyan Jia, 2019. "Estimation and Analysis of Vehicle Exhaust Emissions at Signalized Intersections Using a Car-Following Model," Sustainability, MDPI, vol. 11(14), pages 1-25, July.
    9. Kai Nagel & Peter Wagner & Richard Woesler, 2003. "Still Flowing: Approaches to Traffic Flow and Traffic Jam Modeling," Operations Research, INFORMS, vol. 51(5), pages 681-710, October.
    10. Daiheng Ni & John D. Leonard & Chaoqun Jia & Jianqiang Wang, 2016. "Vehicle Longitudinal Control and Traffic Stream Modeling," Transportation Science, INFORMS, vol. 50(3), pages 1016-1031, August.
    11. Cheng, Qixiu & Lin, Yuqian & Zhou, Xuesong (Simon) & Liu, Zhiyuan, 2024. "Analytical formulation for explaining the variations in traffic states: A fundamental diagram modeling perspective with stochastic parameters," European Journal of Operational Research, Elsevier, vol. 312(1), pages 182-197.
    12. Dayi Qu & Shaojie Wang & Haomin Liu & Yiming Meng, 2022. "A Car-Following Model Based on Trajectory Data for Connected and Automated Vehicles to Predict Trajectory of Human-Driven Vehicles," Sustainability, MDPI, vol. 14(12), pages 1-16, June.
    13. Jinhua Tan & Li Gong & Xuqian Qin, 2019. "Global Optimality under Internet of Vehicles: Strategy to Improve Traffic Safety and Reduce Energy Dissipation," Sustainability, MDPI, vol. 11(17), pages 1-16, August.
    14. Jiang, Rui & Hu, Mao-Bin & Zhang, H.M. & Gao, Zi-You & Jia, Bin & Wu, Qing-Song, 2015. "On some experimental features of car-following behavior and how to model them," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 338-354.
    15. Xiangquan Chen & Zhizhou Wu & Yunyi Liang, 2023. "Modeling Mixed Traffic Flow with Connected Autonomous Vehicles and Human-Driven Vehicles in Off-Ramp Diverging Areas," Sustainability, MDPI, vol. 15(7), pages 1-14, March.
    16. Jin, Wen-Long, 2010. "A kinematic wave theory of lane-changing traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 1001-1021, September.
    17. Kun Zhang & Yu Xue & Hao-Jie Luo & Qiang Zhang & Yuan Tang & Bing-Ling Cen, 2023. "Cyber-attacks on the optimal velocity and its variation by bifurcation analyses," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(12), pages 1-19, December.
    18. Xin Chang & Xingjian Zhang & Haichao Li & Chang Wang & Zhe Liu, 2022. "A Survey on Mixed Traffic Flow Characteristics in Connected Vehicle Environments," Sustainability, MDPI, vol. 14(13), pages 1-22, June.
    19. Li, Xiaopeng & Cui, Jianxun & An, Shi & Parsafard, Mohsen, 2014. "Stop-and-go traffic analysis: Theoretical properties, environmental impacts and oscillation mitigation," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 319-339.
    20. Michael Z. F. Li, 2008. "A Generic Characterization of Equilibrium Speed-Flow Curves," Transportation Science, INFORMS, vol. 42(2), pages 220-235, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:13:p:3726-:d:579470. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.