IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i12p3677-d578515.html
   My bibliography  Save this article

Optimal Process Design of Small Scale SMR Process for LNG Vessel

Author

Listed:
  • Chulmin Hwang

    (Department of Naval Architecture and Ocean Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea)

  • Taejong Yu

    (Department of Naval Architecture and Ocean Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea)

  • Youngsub Lim

    (Department of Naval Architecture and Ocean Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea)

Abstract

Recently, due to regulations on emissions of vessels, fuel is changing to liquefied natural gas (LNG). When using LNG as fuel, it is advantageous in terms of fuel saving and boil-off gas control if a small-scale liquefaction process is installed on the ship. However, due to the limited space, the small-scale liquefaction process for ships has to consider not only efficiency but also simplicity and compactness. In this respect, it is different from the process in onshore liquefaction plants, and research on this is insufficient. Therefore, this paper performs a comparative analysis in terms of efficiency by simplifying the composition of the mixed refrigerant in the liquefaction process. Additionally, a single mixed refrigerant process is used to pursue the compactness of the process. For comparative analysis, the liquefaction process is designed and simulated, and the specific power consumption calculated as the power required to liquefy the unit LNG is used as the objective function to optimize. As a result, it is confirmed that when the number of refrigerants is reduced from 5 to 4, the efficiency is only about a 1% difference, but when it is reduced to 3, the efficiency decreases by 23%, resulting in a decrease in performance.

Suggested Citation

  • Chulmin Hwang & Taejong Yu & Youngsub Lim, 2021. "Optimal Process Design of Small Scale SMR Process for LNG Vessel," Energies, MDPI, vol. 14(12), pages 1-12, June.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:12:p:3677-:d:578515
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/12/3677/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/12/3677/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yoo, Byeong-Yong, 2017. "Economic assessment of liquefied natural gas (LNG) as a marine fuel for CO2 carriers compared to marine gas oil (MGO)," Energy, Elsevier, vol. 121(C), pages 772-780.
    2. Mortazavi, Amir & Alabdulkarem, Abdullah & Hwang, Yunho & Radermacher, Reinhard, 2016. "Development of a robust refrigerant mixture for liquefaction of highly uncertain natural gas compositions," Energy, Elsevier, vol. 113(C), pages 1042-1050.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lee, Jaejun & Son, Heechang & Yu, Taejong & Oh, Juyoung & Park, Min Gyun & Lim, Youngsub, 2023. "Process design of advanced LNG subcooling system combined with a mixed refrigerant cycle," Energy, Elsevier, vol. 278(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lixian Fan & Bingmei Gu, 2019. "Impacts of the Increasingly Strict Sulfur Limit on Compliance Option Choices: The Case Study of Chinese SECA," Sustainability, MDPI, vol. 12(1), pages 1-20, December.
    2. Jinxi Zhou & Junling Zhang & Guoxian Jiang & Kai Xie, 2024. "Using DPF to Control Particulate Matter Emissions from Ships to Ensure the Sustainable Development of the Shipping Industry," Sustainability, MDPI, vol. 16(15), pages 1-17, August.
    3. Trivyza, Nikoletta L. & Rentizelas, Athanasios & Theotokatos, Gerasimos, 2019. "Impact of carbon pricing on the cruise ship energy systems optimal configuration," Energy, Elsevier, vol. 175(C), pages 952-966.
    4. Kian-Guan Lim & Michelle Lim, 2020. "Financial performance of shipping firms that increase LNG carriers and the support of eco-innovation," Journal of Shipping and Trade, Springer, vol. 5(1), pages 1-25, December.
    5. Yoo, Byeong-Yong, 2017. "The development and comparison of CO2 BOG re-liquefaction processes for LNG fueled CO2 carriers," Energy, Elsevier, vol. 127(C), pages 186-197.
    6. Ahmed, Shoaib & Li, Tie & Yi, Ping & Chen, Run, 2023. "Environmental impact assessment of green ammonia-powered very large tanker ship for decarbonized future shipping operations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    7. Duan, Zhongdi & Zhu, Yifeng & Wang, Chenbiao & Yuan, Yuchao & Xue, Hongxiang & Tang, Wenyong, 2023. "Numerical and theoretical prediction of the thermodynamic response in marine LNG fuel tanks under sloshing conditions," Energy, Elsevier, vol. 270(C).
    8. Dai, Lei & Hu, Hao & Wang, Zhaojing, 2020. "Is Shore Side Electricity greener? An environmental analysis and policy implications," Energy Policy, Elsevier, vol. 137(C).
    9. Huerta, Felipe & Vesovic, Velisa, 2019. "A realistic vapour phase heat transfer model for the weathering of LNG stored in large tanks," Energy, Elsevier, vol. 174(C), pages 280-291.
    10. Davide Borelli & Francesco Devia & Corrado Schenone & Federico Silenzi & Luca A. Tagliafico, 2021. "Dynamic Modelling of LNG Powered Combined Energy Systems in Port Areas," Energies, MDPI, vol. 14(12), pages 1-18, June.
    11. Martin Jurkovič & Tomáš Kalina & Ondrej Stopka & Piotr Gorzelanczyk & Borna Abramović, 2021. "Economic Calculation and Operations Research in Terms of LNG Carriage by Water Transport: A Case Study of the Port of Bratislava," Sustainability, MDPI, vol. 13(6), pages 1-25, March.
    12. Salman Farrukh & Mingqiang Li & Georgios D. Kouris & Dawei Wu & Karl Dearn & Zacharias Yerasimou & Pavlos Diamantis & Kostas Andrianos, 2023. "Pathways to Decarbonization of Deep-Sea Shipping: An Aframax Case Study," Energies, MDPI, vol. 16(22), pages 1-26, November.
    13. Song, Rui & Cui, Mengmeng & Liu, Jianjun, 2017. "Single and multiple objective optimization of a natural gas liquefaction process," Energy, Elsevier, vol. 124(C), pages 19-28.
    14. Lee, Jaejun & Son, Heechang & Yu, Taejong & Oh, Juyoung & Park, Min Gyun & Lim, Youngsub, 2023. "Process design of advanced LNG subcooling system combined with a mixed refrigerant cycle," Energy, Elsevier, vol. 278(PA).
    15. Ghorbani, Bahram & Shirmohammadi, Reza & Mehrpooya, Mehdi & Hamedi, Mohammad-Hossein, 2018. "Structural, operational and economic optimization of cryogenic natural gas plant using NSGAII two-objective genetic algorithm," Energy, Elsevier, vol. 159(C), pages 410-428.
    16. Wang, Tingsong & Cheng, Peiyue & Zhen, Lu, 2023. "Green development of the maritime industry: Overview, perspectives, and future research opportunities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    17. Pierre Cariou & Ali Cheaitou & Olivier Faury & Sadeque Hamdan, 2021. "The feasibility of Arctic container shipping: the economic and environmental impacts of ice thickness," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 23(4), pages 615-631, December.
    18. Lei Gao & Jiaxin Wang & Maxime Binama & Qian Li & Weihua Cai, 2022. "The Design and Optimization of Natural Gas Liquefaction Processes: A Review," Energies, MDPI, vol. 15(21), pages 1-56, October.
    19. Wang, Shuaian & Qi, Jingwen & Laporte, Gilbert, 2022. "Governmental subsidy plan modeling and optimization for liquefied natural gas as fuel for maritime transportation," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 304-321.
    20. Fan, Feilong & Aditya, Venkataraman & Xu, Yan & Cheong, Benjamin & Gupta, Amit K., 2022. "Robustly coordinated operation of a ship microgird with hybrid propulsion systems and hydrogen fuel cells," Applied Energy, Elsevier, vol. 312(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:12:p:3677-:d:578515. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.