IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i11p4061-d829624.html
   My bibliography  Save this article

Design and Evaluation of a Laminated Three-Phase Rotary Transformer for DFIG Applications

Author

Listed:
  • Stefan Botha

    (Department of Electrical and Electronic Engineering, Stellenbosch University, Stellenbosch 7600, South Africa)

  • Nkosinathi Gule

    (Department of Electrical and Electronic Engineering, Stellenbosch University, Stellenbosch 7600, South Africa)

Abstract

In doubly fed induction generators (DFIGs), the rotor is excited through slip-ring and brush assemblies. These slip-ring and brush assemblies often require frequent routine maintenance, which affects the reliability of the DFIG. Alternatively, a contact-less energy transfer system, such as a rotary transformer, can be utilized in place of the slip rings. In DFIGs, the rotor frequency is very low, under 5 Hz, and this can lead to a huge rotary transformer since the transformer size is inversely proportional to its operating frequency. However, in a rotor-tied DFIG, whereby the rotor is connected directly to the grid whilst the stator is connected to a back-to-back converter, the rotor frequency becomes the grid frequency and can lead to a reasonably sized rotary transformer. In this paper, the design methodology of a three-phase rotary transformer that can be used in rotor-tied DFIG applications is proposed. The rotary transformer is coupled to the power windings of the rotor-tied DFIG and can improve its reactive power capabilities. The proposed methodology is validated with finite element analysis in 3D and can be used for an efficient design process with the proposed error correction. The proposed methodology is then applied in the design of a 6 kVA rotary transformer. Remarkable practical results are presented to demonstrate the effectiveness of the methodology. The rotary transformer is subsequently coupled to a rotor-tied DFIG and an acceptable performance is demonstrated for the entire system.

Suggested Citation

  • Stefan Botha & Nkosinathi Gule, 2022. "Design and Evaluation of a Laminated Three-Phase Rotary Transformer for DFIG Applications," Energies, MDPI, vol. 15(11), pages 1-20, June.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:11:p:4061-:d:829624
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/11/4061/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/11/4061/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sebastian Pfaffel & Stefan Faulstich & Kurt Rohrig, 2017. "Performance and Reliability of Wind Turbines: A Review," Energies, MDPI, vol. 10(11), pages 1-27, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kumarasamy Palanimuthu & Ganesh Mayilsamy & Ameerkhan Abdul Basheer & Seong-Ryong Lee & Dongran Song & Young Hoon Joo, 2022. "A Review of Recent Aerodynamic Power Extraction Challenges in Coordinated Pitch, Yaw, and Torque Control of Large-Scale Wind Turbine Systems," Energies, MDPI, vol. 15(21), pages 1-27, November.
    2. Stetco, Adrian & Dinmohammadi, Fateme & Zhao, Xingyu & Robu, Valentin & Flynn, David & Barnes, Mike & Keane, John & Nenadic, Goran, 2019. "Machine learning methods for wind turbine condition monitoring: A review," Renewable Energy, Elsevier, vol. 133(C), pages 620-635.
    3. Pinheiro, E. & Bandeiras, F. & Gomes, M. & Coelho, P. & Fernandes, J., 2019. "Performance analysis of wind generators and PV systems in industrial small-scale applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 392-401.
    4. Cevasco, D. & Koukoura, S. & Kolios, A.J., 2021. "Reliability, availability, maintainability data review for the identification of trends in offshore wind energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    5. Li, Mingxin & Jiang, Xiaoli & Carroll, James & Negenborn, Rudy R., 2022. "A multi-objective maintenance strategy optimization framework for offshore wind farms considering uncertainty," Applied Energy, Elsevier, vol. 321(C).
    6. Ewing, Fraser J. & Thies, Philipp R. & Shek, Jonathan & Ferreira, Claudio Bittencourt, 2020. "Probabilistic failure rate model of a tidal turbine pitch system," Renewable Energy, Elsevier, vol. 160(C), pages 987-997.
    7. Francisco Bilendo & Angela Meyer & Hamed Badihi & Ningyun Lu & Philippe Cambron & Bin Jiang, 2022. "Applications and Modeling Techniques of Wind Turbine Power Curve for Wind Farms—A Review," Energies, MDPI, vol. 16(1), pages 1-38, December.
    8. Marc-Alexander Lutz & Stephan Vogt & Volker Berkhout & Stefan Faulstich & Steffen Dienst & Urs Steinmetz & Christian Gück & Andres Ortega, 2020. "Evaluation of Anomaly Detection of an Autoencoder Based on Maintenace Information and Scada-Data," Energies, MDPI, vol. 13(5), pages 1-18, February.
    9. Koukoura, Sofia & Scheu, Matti Niclas & Kolios, Athanasios, 2021. "Influence of extended potential-to-functional failure intervals through condition monitoring systems on offshore wind turbine availability," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    10. Wang, L. & Kolios, A. & Liu, X. & Venetsanos, D. & Rui, C., 2022. "Reliability of offshore wind turbine support structures: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    11. Radu Saulescu & Mircea Neagoe & Codruta Jaliu & Olimpiu Munteanu, 2021. "A Comparative Performance Analysis of Counter-Rotating Dual-Rotor Wind Turbines with Speed-Adding Increasers," Energies, MDPI, vol. 14(9), pages 1-21, May.
    12. Shuo Zeng & Moshe Dror, 2019. "Serving many masters: an agent and his principals," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 90(1), pages 23-59, August.
    13. Li, Qian & Loy-Benitez, Jorge & Nam, KiJeon & Hwangbo, Soonho & Rashidi, Jouan & Yoo, ChangKyoo, 2019. "Sustainable and reliable design of reverse osmosis desalination with hybrid renewable energy systems through supply chain forecasting using recurrent neural networks," Energy, Elsevier, vol. 178(C), pages 277-292.
    14. Leszek Kasprzyk & Andrzej Tomczewski & Robert Pietracho & Agata Mielcarek & Zbigniew Nadolny & Krzysztof Tomczewski & Grzegorz Trzmiel & Juan Alemany, 2020. "Optimization of a PV-Wind Hybrid Power Supply Structure with Electrochemical Storage Intended for Supplying a Load with Known Characteristics," Energies, MDPI, vol. 13(22), pages 1-31, November.
    15. Hans Olav Vogt Myklebust & Jo Eidsvik & Iver Bakken Sperstad & Debarun Bhattacharjya, 2020. "Value of Information Analysis for Complex Simulator Models: Application to Wind Farm Maintenance," Decision Analysis, INFORMS, vol. 17(2), pages 134-153, June.
    16. Kevin Leahy & Colm Gallagher & Peter O’Donovan & Dominic T. J. O’Sullivan, 2019. "Issues with Data Quality for Wind Turbine Condition Monitoring and Reliability Analyses," Energies, MDPI, vol. 12(2), pages 1-22, January.
    17. Yanhui Qiao & Yongqian Liu & Yang Chen & Shuang Han & Luo Wang, 2022. "Power Generation Performance Indicators of Wind Farms Including the Influence of Wind Energy Resource Differences," Energies, MDPI, vol. 15(5), pages 1-25, February.
    18. McMorland, Jade & Flannigan, Callum & Carroll, James & Collu, Maurizio & McMillan, David & Leithead, William & Coraddu, Andrea, 2022. "A review of operations and maintenance modelling with considerations for novel wind turbine concepts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    19. Soszyńska-Budny Joanna & Chmielewski Mariusz & Pioch Joanna, 2023. "Reliability of Renewable Power Generation using the Example of Offshore Wind Farms," Folia Oeconomica Stetinensia, Sciendo, vol. 23(1), pages 228-245, June.
    20. Gürdal Ertek & Lakshmi Kailas, 2021. "Analyzing a Decade of Wind Turbine Accident News with Topic Modeling," Sustainability, MDPI, vol. 13(22), pages 1-34, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:11:p:4061-:d:829624. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.