IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i12p3383-d571188.html
   My bibliography  Save this article

Device Optimization of a Lead-Free Perovskite/Silicon Tandem Solar Cell with 24.4% Power Conversion Efficiency

Author

Listed:
  • Khaoula Amri

    (LMOPS, Université de Lorraine, CentraleSupélec, F-57000 Metz, France
    LISIER, Université de Tunis, Tunis 1008, Tunisia)

  • Rabeb Belghouthi

    (LMOPS, Université de Lorraine, CentraleSupélec, F-57000 Metz, France
    LOMC, UMR CNRS 6294, Université du Havre, F-76600 Le Havre, France)

  • Michel Aillerie

    (LMOPS, Université de Lorraine, CentraleSupélec, F-57000 Metz, France)

  • Rached Gharbi

    (LISIER, Université de Tunis, Tunis 1008, Tunisia)

Abstract

In this work, simulations were performed to optimize the parameters of a lead-free perovskite/silicon tandem solar cell for the improved efficiency and stability of commercial devices. The top sub-cell is based on a lead-free perovskite with a large bandgap of 1.8 eV, an electron transport layer of SnO 2 /PCBM, which is known for its anti-hysteresis effect, and a hole transport layer of NiO to improve stability, whereas the bottom sub-cell is based on n-type silicon to increase the efficiency of the whole cell. First, the two sub-cells were simulated under standalone conditions for calibration purposes. Then, the current matching condition was obtained by optimizing the thicknesses of the absorber layers of both sub-cells and the doping concentration of the back surface field (BSF) layer of the silicon sub-cell. As a result of this optimization phase, thicknesses of 380 nm and 20 µm for the top and bottom sub-cells, respectively, and a doping concentration of 10 22 cm –3 were used in the configuration of the tandem cell, yielding a large open-circuit voltage of 1.76 V and a power conversion efficiency of 24.4% for the whole cell. Finally, the effect of the working temperature was evaluated, and the results reveal that the high performance of lead-free perovskite sub-cells is less affected by an increase in temperature compared to lead-based solar cells, such as those based on CH 3 NH 3 PbI 3 perovskite.

Suggested Citation

  • Khaoula Amri & Rabeb Belghouthi & Michel Aillerie & Rached Gharbi, 2021. "Device Optimization of a Lead-Free Perovskite/Silicon Tandem Solar Cell with 24.4% Power Conversion Efficiency," Energies, MDPI, vol. 14(12), pages 1-20, June.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:12:p:3383-:d:571188
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/12/3383/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/12/3383/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wali, Qamar & Elumalai, Naveen Kumar & Iqbal, Yaseen & Uddin, Ashraf & Jose, Rajan, 2018. "Tandem perovskite solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 89-110.
    2. Tomas Leijtens & Kevin A. Bush & Rohit Prasanna & Michael D. McGehee, 2018. "Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors," Nature Energy, Nature, vol. 3(10), pages 828-838, October.
    3. Tomas Leijtens & Giles E. Eperon & Sandeep Pathak & Antonio Abate & Michael M. Lee & Henry J. Snaith, 2013. "Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells," Nature Communications, Nature, vol. 4(1), pages 1-8, December.
    4. Matthew O. Reese & Stephen Glynn & Michael D. Kempe & Deborah L. McGott & Matthew S. Dabney & Teresa M. Barnes & Samuel Booth & David Feldman & Nancy M. Haegel, 2018. "Increasing markets and decreasing package weight for high-specific-power photovoltaics," Nature Energy, Nature, vol. 3(11), pages 1002-1012, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chee, A. Kuan-Way, 2023. "On current technology for light absorber materials used in highly efficient industrial solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    2. Zimmerman, Ryan & Panda, Anurag & Bulović, Vladimir, 2020. "Techno-economic assessment and deployment strategies for vertically-mounted photovoltaic panels," Applied Energy, Elsevier, vol. 276(C).
    3. Xinchen Dai & Pramod Koshy & Charles Christopher Sorrell & Jongchul Lim & Jae Sung Yun, 2020. "Focussed Review of Utilization of Graphene-Based Materials in Electron Transport Layer in Halide Perovskite Solar Cells: Materials-Based Issues," Energies, MDPI, vol. 13(23), pages 1-24, December.
    4. Parlikar, Anupam & Truong, Cong Nam & Jossen, Andreas & Hesse, Holger, 2021. "The carbon footprint of island grids with lithium-ion battery systems: An analysis based on levelized emissions of energy supply," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    5. Parlikar, Anupam & Schott, Maximilian & Godse, Ketaki & Kucevic, Daniel & Jossen, Andreas & Hesse, Holger, 2023. "High-power electric vehicle charging: Low-carbon grid integration pathways with stationary lithium-ion battery systems and renewable generation," Applied Energy, Elsevier, vol. 333(C).
    6. Neill Bartie & Lucero Cobos‐Becerra & Florian Mathies & Janardan Dagar & Eva Unger & Magnus Fröhling & Markus A. Reuter & Rutger Schlatmann, 2023. "Cost versus environment? Combined life cycle, techno‐economic, and circularity assessment of silicon‐ and perovskite‐based photovoltaic systems," Journal of Industrial Ecology, Yale University, vol. 27(3), pages 993-1007, June.
    7. Ubani, C.A. & Ibrahim, M.A. & Teridi, M.A.M., 2017. "Moving into the domain of perovskite sensitized solar cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 907-915.
    8. Simone M. P. Meroni & Carys Worsley & Dimitrios Raptis & Trystan M. Watson, 2021. "Triple-Mesoscopic Carbon Perovskite Solar Cells: Materials, Processing and Applications," Energies, MDPI, vol. 14(2), pages 1-37, January.
    9. Young-Su Kim & A-Rong Kim & Sung-Ju Tark, 2022. "Building-Integrated Photovoltaic Modules Using Additive-Manufactured Optical Pattern," Energies, MDPI, vol. 15(4), pages 1-13, February.
    10. Ke Wang & Benjamin Ecker & Yongli Gao, 2021. "Photoemission Studies on the Environmental Stability of Thermal Evaporated MAPbI 3 Thin Films and MAPbBr 3 Single Crystals," Energies, MDPI, vol. 14(7), pages 1-18, April.
    11. Inga Ermanova & Narges Yaghoobi Nia & Enrico Lamanna & Elisabetta Di Bartolomeo & Evgeny Kolesnikov & Lev Luchnikov & Aldo Di Carlo, 2021. "Crystal Engineering Approach for Fabrication of Inverted Perovskite Solar Cell in Ambient Conditions," Energies, MDPI, vol. 14(6), pages 1-15, March.
    12. Grażyna Kulesza-Matlak & Kazimierz Drabczyk & Anna Sypień & Agnieszka Pająk & Łukasz Major & Marek Lipiński, 2021. "Interlayer Microstructure Analysis of the Transition Zone in the Silicon/Perovskite Tandem Solar Cell," Energies, MDPI, vol. 14(20), pages 1-15, October.
    13. Khan, Firoz & Rezgui, Béchir Dridi & Khan, Mohd Taukeer & Al-Sulaiman, Fahad, 2022. "Perovskite-based tandem solar cells: Device architecture, stability, and economic perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    14. Gordon, Jeffrey M., 2022. "Uninterrupted photovoltaic power for lunar colonization without the need for storage," Renewable Energy, Elsevier, vol. 187(C), pages 987-994.
    15. Chantana, Jakapan & Takeguchi, Kota & Kawano, Yu & Minemoto, Takashi, 2022. "Estimation of annual energy generation of perovskite/crystalline Si tandem solar cells with different configurations in central part of Japan," Renewable Energy, Elsevier, vol. 195(C), pages 896-905.
    16. Yunqing Cao & Ping Zhu & Dongke Li & Xianghua Zeng & Dan Shan, 2020. "Size-Dependent and Enhanced Photovoltaic Performance of Solar Cells Based on Si Quantum Dots," Energies, MDPI, vol. 13(18), pages 1-11, September.
    17. Maria Khalid & Anurag Roy & Shubhranshu Bhandari & Senthilarasu Sundaram & Tapas K. Mallick, 2021. "Integrating Concentrated Optics for Ambient Perovskite Solar Cells," Energies, MDPI, vol. 14(9), pages 1-12, May.
    18. Baptiste Marteau & Thibaut Desrues & Quentin Rafhay & Anne Kaminski & Sébastien Dubois, 2023. "Passivating Silicon Tunnel Diode for Perovskite on Silicon Nip Tandem Solar Cells," Energies, MDPI, vol. 16(11), pages 1-13, May.
    19. Ali, Nasir & Rauf, Sajid & Kong, Weiguang & Ali, Shahid & Wang, Xiaoyu & Khesro, Amir & Yang, Chang Ping & Zhu, Bin & Wu, Huizhen, 2019. "An overview of the decompositions in organo-metal halide perovskites and shielding with 2-dimensional perovskites," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 160-186.
    20. Yurui Wang & Renxing Lin & Xiaoyu Wang & Chenshuaiyu Liu & Yameen Ahmed & Zilong Huang & Zhibin Zhang & Hongjiang Li & Mei Zhang & Yuan Gao & Haowen Luo & Pu Wu & Han Gao & Xuntian Zheng & Manya Li & , 2023. "Oxidation-resistant all-perovskite tandem solar cells in substrate configuration," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:12:p:3383-:d:571188. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.