IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-54818-6.html
   My bibliography  Save this article

Highly efficient narrow bandgap Cu(In,Ga)Se2 solar cells with enhanced open circuit voltage for tandem application

Author

Listed:
  • Junjun Zhang

    (Wuhan University)

  • Zengyang Ma

    (Wuhan University)

  • Yitian Zhang

    (Wuhan University)

  • Xinxing Liu

    (Wuhan University)

  • Ruiming Li

    (Wuhan University)

  • Qianqian Lin

    (Wuhan University)

  • Guojia Fang

    (Wuhan University)

  • Xue Zheng

    (Chinese Academy of Sciences)

  • Weimin Li

    (Chinese Academy of Sciences)

  • Chunlei Yang

    (Chinese Academy of Sciences)

  • Jianmin Li

    (Wuhan University)

  • Junbo Gong

    (Wuhan University)

  • Xudong Xiao

    (Wuhan University)

Abstract

Although an ideal bandgap matching with 0.96 eV and 1.62 eV for a double-junction tandem is hard to realize practically, among all mature photovoltaic systems, Cu(In,Ga)Se2 (CIGSe) can provide the closest bandgap of 1.00 eV for the bottom sub-cell by adjusting its composition. However, pure CuInSe2 (CISe) solar cell suffers strong interfacial carrier recombination. We hereby present approaches to introduce appropriate Ga gradients in both the back and front parts of absorber while maintaining the absorption spectrum close to CISe. With an appropriate front Ga gradient, the open circuit voltage can be enhanced by ~30 mV. With a pre-deposited CIGSe layer and a high copper excess deposition during absorber growth, the Ga diffusion can be well suppressed and a wide U-shaped Ga grading with a minimum bandgap of 1.01 eV has been created. Our optimized narrow-bandgap CIGSe solar cell has achieved a certified record PCE of 20.26%, with a record-low open circuit voltage deficit of 368 mV and a record-high contribution of 10% absolute efficiency to a four-terminal tandem. This work demonstrates the potential of controlling gallium diffusion to improve the performance of narrow bandgap CIGSe solar cells for tandem applications.

Suggested Citation

  • Junjun Zhang & Zengyang Ma & Yitian Zhang & Xinxing Liu & Ruiming Li & Qianqian Lin & Guojia Fang & Xue Zheng & Weimin Li & Chunlei Yang & Jianmin Li & Junbo Gong & Xudong Xiao, 2024. "Highly efficient narrow bandgap Cu(In,Ga)Se2 solar cells with enhanced open circuit voltage for tandem application," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54818-6
    DOI: 10.1038/s41467-024-54818-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-54818-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-54818-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jan Keller & Klara Kiselman & Olivier Donzel-Gargand & Natalia M. Martin & Melike Babucci & Olle Lundberg & Erik Wallin & Lars Stolt & Marika Edoff, 2024. "High-concentration silver alloying and steep back-contact gallium grading enabling copper indium gallium selenide solar cell with 23.6% efficiency," Nature Energy, Nature, vol. 9(4), pages 467-478, April.
    2. Bin Chen & Se-Woong Baek & Yi Hou & Erkan Aydin & Michele De Bastiani & Benjamin Scheffel & Andrew Proppe & Ziru Huang & Mingyang Wei & Ya-Kun Wang & Eui-Hyuk Jung & Thomas G. Allen & Emmanuel Van Ker, 2020. "Enhanced optical path and electron diffusion length enable high-efficiency perovskite tandems," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    3. Tomas Leijtens & Kevin A. Bush & Rohit Prasanna & Michael D. McGehee, 2018. "Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors," Nature Energy, Nature, vol. 3(10), pages 828-838, October.
    4. Renxing Lin & Jian Xu & Mingyang Wei & Yurui Wang & Zhengyuan Qin & Zhou Liu & Jinlong Wu & Ke Xiao & Bin Chen & So Min Park & Gang Chen & Harindi R. Atapattu & Kenneth R. Graham & Jun Xu & Jia Zhu & , 2022. "All-perovskite tandem solar cells with improved grain surface passivation," Nature, Nature, vol. 603(7899), pages 73-78, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jingwei Zhu & Xiaozhen Huang & Yi Luo & Wenbo Jiao & Yuliang Xu & Juncheng Wang & Zhiyu Gao & Kun Wei & Tianshu Ma & Jiayu You & Jialun Jin & Shenghan Wu & Zhihao Zhang & Wenqing Liang & Yang Wang & S, 2025. "Self-assembled hole-selective contact for efficient Sn-Pb perovskite solar cells and all-perovskite tandems," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    2. Khan, Firoz & Rezgui, Béchir Dridi & Khan, Mohd Taukeer & Al-Sulaiman, Fahad, 2022. "Perovskite-based tandem solar cells: Device architecture, stability, and economic perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    3. Kyle Frohna & Cullen Chosy & Amran Al-Ashouri & Florian Scheler & Yu-Hsien Chiang & Milos Dubajic & Julia E. Parker & Jessica M. Walker & Lea Zimmermann & Thomas A. Selby & Yang Lu & Bart Roose & Stev, 2025. "The impact of interfacial quality and nanoscale performance disorder on the stability of alloyed perovskite solar cells," Nature Energy, Nature, vol. 10(1), pages 66-76, January.
    4. Yurui Wang & Renxing Lin & Xiaoyu Wang & Chenshuaiyu Liu & Yameen Ahmed & Zilong Huang & Zhibin Zhang & Hongjiang Li & Mei Zhang & Yuan Gao & Haowen Luo & Pu Wu & Han Gao & Xuntian Zheng & Manya Li & , 2023. "Oxidation-resistant all-perovskite tandem solar cells in substrate configuration," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Yongyan Pan & Jianan Wang & Zhenxing Sun & Jiaqi Zhang & Zheng Zhou & Chenyang Shi & Sanwan Liu & Fumeng Ren & Rui Chen & Yong Cai & Huande Sun & Bin Liu & Zhongyong Zhang & Zhengjing Zhao & Zihe Cai , 2024. "Surface chemical polishing and passivation minimize non-radiative recombination for all-perovskite tandem solar cells," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    6. Fangfang Wang & Mubai Li & Qiushuang Tian & Riming Sun & Hongzhuang Ma & Hongze Wang & Jingxi Chang & Zihao Li & Haoyu Chen & Jiupeng Cao & Aifei Wang & Jingjin Dong & You Liu & Jinzheng Zhao & Ying C, 2023. "Monolithically-grained perovskite solar cell with Mortise-Tenon structure for charge extraction balance," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Yuanying Chi & Mingjian Yan & Yuexia Pang & Hongbo Lei, 2022. "Financial Risk Assessment of Photovoltaic Industry Listed Companies Based on Text Mining," Sustainability, MDPI, vol. 14(19), pages 1-17, September.
    8. Wenbo Li & Zhe Li & Shun Zhou & Yanzhuo Gou & Guang Li & Jinghao Li & Cheng Wang & Yan Zeng & Jiakai Yan & Yan Li & Wei Dai & Yaoguang Rong & Weijun Ke & Ti Wang & Hongxing Xu, 2025. "Unveiling the nexus between irradiation and phase reconstruction in tin-lead perovskite solar cells," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    9. Grażyna Kulesza-Matlak & Kazimierz Drabczyk & Anna Sypień & Agnieszka Pająk & Łukasz Major & Marek Lipiński, 2021. "Interlayer Microstructure Analysis of the Transition Zone in the Silicon/Perovskite Tandem Solar Cell," Energies, MDPI, vol. 14(20), pages 1-15, October.
    10. Min Xu & Jinjun Qu & Mai Li, 2022. "National Policies, Recent Research Hotspots, and Application of Sustainable Energy: Case of China, USA, and European Countries," Sustainability, MDPI, vol. 14(16), pages 1-30, August.
    11. Chantana, Jakapan & Takeguchi, Kota & Kawano, Yu & Minemoto, Takashi, 2022. "Estimation of annual energy generation of perovskite/crystalline Si tandem solar cells with different configurations in central part of Japan," Renewable Energy, Elsevier, vol. 195(C), pages 896-905.
    12. Yunqing Cao & Ping Zhu & Dongke Li & Xianghua Zeng & Dan Shan, 2020. "Size-Dependent and Enhanced Photovoltaic Performance of Solar Cells Based on Si Quantum Dots," Energies, MDPI, vol. 13(18), pages 1-11, September.
    13. Baptiste Marteau & Thibaut Desrues & Quentin Rafhay & Anne Kaminski & Sébastien Dubois, 2023. "Passivating Silicon Tunnel Diode for Perovskite on Silicon Nip Tandem Solar Cells," Energies, MDPI, vol. 16(11), pages 1-13, May.
    14. Li, Bowei & Jayawardena, K.D. G. Imalka & Zhang, Jing & Bandara, Rajapakshe Mudiyanselage Indrachapa & Liu, Xueping & Bi, Jingxin & Silva, Shashini M. & Liu, Dongtao & Underwood, Cameron C.L. & Xiang,, 2024. "Stability of formamidinium tin triiodide-based inverted perovskite solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    15. Jian Xu & Aidan Maxwell & Zhaoning Song & Abdulaziz S. R. Bati & Hao Chen & Chongwen Li & So Min Park & Yanfa Yan & Bin Chen & Edward H. Sargent, 2024. "The dynamic adsorption affinity of ligands is a surrogate for the passivation of surface defects," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    16. Huangjun Xue & Xin Wen & Cheng Fu & Haolan Zhan & Zongquan Zou & Ruifen Zhang & Yongpeng Xia & Fen Xu & Lixian Sun, 2023. "Solar Energy Conversion and Electron Storage by a Cu 2 O/CuO Photocapacitive Electrode," Energies, MDPI, vol. 16(7), pages 1-11, April.
    17. Weiqing Chen & Shun Zhou & Hongsen Cui & Weiwei Meng & Hongling Guan & Guojun Zeng & Yansong Ge & Sengke Cheng & Zixi Yu & Dexin Pu & Lishuai Huang & Jin Zhou & Guoyi Chen & Guang Li & Hongyi Fang & Z, 2025. "Universal in situ oxide-based ABX3-structured seeds for templating halide perovskite growth in All-perovskite tandems," Nature Communications, Nature, vol. 16(1), pages 1-12, December.
    18. Boucar Diouf & Aarti Muley & Ramchandra Pode, 2023. "Issues, Challenges, and Future Perspectives of Perovskites for Energy Conversion Applications," Energies, MDPI, vol. 16(18), pages 1-29, September.
    19. Khaoula Amri & Rabeb Belghouthi & Michel Aillerie & Rached Gharbi, 2021. "Device Optimization of a Lead-Free Perovskite/Silicon Tandem Solar Cell with 24.4% Power Conversion Efficiency," Energies, MDPI, vol. 14(12), pages 1-20, June.
    20. Pengju Shi & Jiazhe Xu & Ilhan Yavuz & Tianyi Huang & Shaun Tan & Ke Zhao & Xu Zhang & Yuan Tian & Sisi Wang & Wei Fan & Yahui Li & Donger Jin & Xuemeng Yu & Chenyue Wang & Xingyu Gao & Zhong Chen & E, 2024. "Strain regulates the photovoltaic performance of thick-film perovskites," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-54818-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.