IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i23p6335-d454345.html
   My bibliography  Save this article

Focussed Review of Utilization of Graphene-Based Materials in Electron Transport Layer in Halide Perovskite Solar Cells: Materials-Based Issues

Author

Listed:
  • Xinchen Dai

    (School of Materials Science and Engineering, UNSW Sydney, Sydney 2052, Australia)

  • Pramod Koshy

    (School of Materials Science and Engineering, UNSW Sydney, Sydney 2052, Australia)

  • Charles Christopher Sorrell

    (School of Materials Science and Engineering, UNSW Sydney, Sydney 2052, Australia)

  • Jongchul Lim

    (Graduate School of Energy Science and Technology, Chungnam National University, Daejeon 34134, Korea)

  • Jae Sung Yun

    (Australian Centre for Advanced Photovoltaics (ACAP), School of Photovoltaic and Renewable Energy Engineering, UNSW Sydney, Sydney 2052, Australia)

Abstract

The present work applies a focal point of materials-related issues to review the major case studies of electron transport layers (ETLs) of metal halide perovskite solar cells (PSCs) that contain graphene-based materials (GBMs), including graphene (GR), graphene oxide (GO), reduced graphene oxide (RGO), and graphene quantum dots (GQDs). The coverage includes the principal components of ETLs, which are compact and mesoporous TiO 2 , SnO 2 , ZnO and the fullerene derivative PCBM. Basic considerations of solar cell design are provided and the effects of the different ETL materials on the power conversion efficiency (PCE) have been surveyed. The strategy of adding GBMs is based on a range of phenomenological outcomes, including enhanced electron transport, enhanced current density-voltage (J-V) characteristics and parameters, potential for band gap (E g ) tuning, and enhanced device stability (chemical and environmental). These characteristics are made complicated by the variable effects of GBM size, amount, morphology, and distribution on the nanostructure, the resultant performance, and the associated effects on the potential for charge recombination. A further complication is the uncertain nature of the interfaces between the ETL and perovskite as well as between phases within the ETL.

Suggested Citation

  • Xinchen Dai & Pramod Koshy & Charles Christopher Sorrell & Jongchul Lim & Jae Sung Yun, 2020. "Focussed Review of Utilization of Graphene-Based Materials in Electron Transport Layer in Halide Perovskite Solar Cells: Materials-Based Issues," Energies, MDPI, vol. 13(23), pages 1-24, December.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:23:p:6335-:d:454345
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/23/6335/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/23/6335/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Patil, Jyoti V. & Mali, Sawanta S. & Patil, Akhilesh P. & Patil, Pramod S. & Hong, Chang Kook, 2019. "Highly efficient mixed-halide mixed-cation perovskite solar cells based on rGO-TiO2 composite nanofibers," Energy, Elsevier, vol. 189(C).
    2. Marina R. Filip & Giles E. Eperon & Henry J. Snaith & Feliciano Giustino, 2014. "Steric engineering of metal-halide perovskites with tunable optical band gaps," Nature Communications, Nature, vol. 5(1), pages 1-9, December.
    3. Yuchuan Shao & Zhengguo Xiao & Cheng Bi & Yongbo Yuan & Jinsong Huang, 2014. "Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells," Nature Communications, Nature, vol. 5(1), pages 1-7, December.
    4. Dong Yang & Ruixia Yang & Kai Wang & Congcong Wu & Xuejie Zhu & Jiangshan Feng & Xiaodong Ren & Guojia Fang & Shashank Priya & Shengzhong (Frank) Liu, 2018. "High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO2," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
    5. Enbing Bi & Han Chen & Fengxian Xie & Yongzhen Wu & Wei Chen & Yanjie Su & Ashraful Islam & Michael Grätzel & Xudong Yang & Liyuan Han, 2017. "Diffusion engineering of ions and charge carriers for stable efficient perovskite solar cells," Nature Communications, Nature, vol. 8(1), pages 1-7, August.
    6. Tomas Leijtens & Giles E. Eperon & Sandeep Pathak & Antonio Abate & Michael M. Lee & Henry J. Snaith, 2013. "Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells," Nature Communications, Nature, vol. 4(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ilaria Matacena & Pierluigi Guerriero & Laura Lancellotti & Brigida Alfano & Antonella De Maria & Vera La Ferrara & Lucia V. Mercaldo & Maria Lucia Miglietta & Tiziana Polichetti & Gabriella Rametta &, 2023. "Impedance Spectroscopy Analysis of Perovskite Solar Cell Stability," Energies, MDPI, vol. 16(13), pages 1-10, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sajid, Sajid & Huang, Hao & Ji, Jun & Jiang, Haoran & Duan, Mingjun & Liu, Xin & Liu, Benyu & Li, Meicheng, 2021. "Quest for robust electron transporting materials towards efficient, hysteresis-free and stable perovskite solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    2. Mesquita, Isabel & Andrade, Luísa & Mendes, Adélio, 2018. "Perovskite solar cells: Materials, configurations and stability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2471-2489.
    3. Weilun Li & Mengmeng Hao & Ardeshir Baktash & Lianzhou Wang & Joanne Etheridge, 2023. "The role of ion migration, octahedral tilt, and the A-site cation on the instability of Cs1-xFAxPbI3," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Jin Wen & Yicheng Zhao & Pu Wu & Yuxuan Liu & Xuntian Zheng & Renxing Lin & Sushu Wan & Ke Li & Haowen Luo & Yuxi Tian & Ludong Li & Hairen Tan, 2023. "Heterojunction formed via 3D-to-2D perovskite conversion for photostable wide-bandgap perovskite solar cells," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Shuo Wang & Qian Zhao & Abhijit Hazarika & Simiao Li & Yue Wu & Yaxin Zhai & Xihan Chen & Joseph M. Luther & Guoran Li, 2023. "Thermal tolerance of perovskite quantum dots dependent on A-site cation and surface ligand," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    6. Ubani, C.A. & Ibrahim, M.A. & Teridi, M.A.M., 2017. "Moving into the domain of perovskite sensitized solar cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 907-915.
    7. Simone M. P. Meroni & Carys Worsley & Dimitrios Raptis & Trystan M. Watson, 2021. "Triple-Mesoscopic Carbon Perovskite Solar Cells: Materials, Processing and Applications," Energies, MDPI, vol. 14(2), pages 1-37, January.
    8. Ke Wang & Benjamin Ecker & Yongli Gao, 2021. "Photoemission Studies on the Environmental Stability of Thermal Evaporated MAPbI 3 Thin Films and MAPbBr 3 Single Crystals," Energies, MDPI, vol. 14(7), pages 1-18, April.
    9. Inga Ermanova & Narges Yaghoobi Nia & Enrico Lamanna & Elisabetta Di Bartolomeo & Evgeny Kolesnikov & Lev Luchnikov & Aldo Di Carlo, 2021. "Crystal Engineering Approach for Fabrication of Inverted Perovskite Solar Cell in Ambient Conditions," Energies, MDPI, vol. 14(6), pages 1-15, March.
    10. Guus J. W. Aalbers & Tom P. A. Pol & Kunal Datta & Willemijn H. M. Remmerswaal & Martijn M. Wienk & René A. J. Janssen, 2024. "Effect of sub-bandgap defects on radiative and non-radiative open-circuit voltage losses in perovskite solar cells," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    11. Haitao Zhou & Kai Cai & Shiqi Yu & Zhenhan Wang & Zhuang Xiong & Zema Chu & Xinbo Chu & Qi Jiang & Jingbi You, 2024. "Efficient and stable perovskite mini-module via high-quality homogeneous perovskite crystallization and improved interconnect," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    12. Peisheng Cao & Haoyue Zheng & Peng Wu, 2022. "Multicolor ultralong phosphorescence from perovskite-like octahedral α-AlF3," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    13. Jin Zhou & Shiqiang Fu & Shun Zhou & Lishuai Huang & Cheng Wang & Hongling Guan & Dexin Pu & Hongsen Cui & Chen Wang & Ti Wang & Weiwei Meng & Guojia Fang & Weijun Ke, 2024. "Mixed tin-lead perovskites with balanced crystallization and oxidation barrier for all-perovskite tandem solar cells," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    14. Maria Khalid & Anurag Roy & Shubhranshu Bhandari & Senthilarasu Sundaram & Tapas K. Mallick, 2021. "Integrating Concentrated Optics for Ambient Perovskite Solar Cells," Energies, MDPI, vol. 14(9), pages 1-12, May.
    15. Mara Bruzzi & Naomi Falsini & Nicola Calisi & Anna Vinattieri, 2020. "Electrically Active Defects in Polycrystalline and Single Crystal Metal Halide Perovskite," Energies, MDPI, vol. 13(7), pages 1-14, April.
    16. Ali, Nasir & Rauf, Sajid & Kong, Weiguang & Ali, Shahid & Wang, Xiaoyu & Khesro, Amir & Yang, Chang Ping & Zhu, Bin & Wu, Huizhen, 2019. "An overview of the decompositions in organo-metal halide perovskites and shielding with 2-dimensional perovskites," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 160-186.
    17. Li, Bowei & Jayawardena, K.D. G. Imalka & Zhang, Jing & Bandara, Rajapakshe Mudiyanselage Indrachapa & Liu, Xueping & Bi, Jingxin & Silva, Shashini M. & Liu, Dongtao & Underwood, Cameron C.L. & Xiang,, 2024. "Stability of formamidinium tin triiodide-based inverted perovskite solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    18. MiJoung Kim & MoonHoe Kim & JungSeock Oh & NamHee Kwon & Yoonmook Kang & JungYup Yang, 2019. "Phenyl-C61-Butyric Acid Methyl Ester Hybrid Solution for Efficient CH 3 NH 3 PbI 3 Perovskite Solar Cells," Sustainability, MDPI, vol. 11(14), pages 1-11, July.
    19. Feng Ke & Jiejuan Yan & Shanyuan Niu & Jiajia Wen & Ketao Yin & Hong Yang & Nathan R. Wolf & Yan-Kai Tzeng & Hemamala I. Karunadasa & Young S. Lee & Wendy L. Mao & Yu Lin, 2022. "Cesium-mediated electron redistribution and electron-electron interaction in high-pressure metallic CsPbI3," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    20. Nieto-Díaz, Balder A. & Crossland, Andrew F. & Groves, Christopher, 2021. "A levelized cost of energy approach to select and optimise emerging PV technologies: The relative impact of degradation, cost and initial efficiency," Applied Energy, Elsevier, vol. 299(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:23:p:6335-:d:454345. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.